Коэффициент вариации как считать. Показатели вариации: понятие, виды, формулы для вычислений

Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из . Для расчета стандартного отклонения используется функция СТАНДОТКЛОН . Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В .

Синтаксис данных функций выглядит соответствующим образом:

СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)


Шаг 2: расчет среднего арифметического

Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ . Вычислим её значение на конкретном примере.


Шаг 3: нахождение коэффициента вариации

Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.


Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.


Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.

Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

Показатели описательной статистики

Существует несколько показателей, которые использует описательная статистика.

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться. Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического. Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Если свести все к строгим математическим терминам, то определение среднего арифметического (обозначается греческой буквой – μ («мю»)) будет звучать так:

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ 2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Среднее квадратичное отклонение хорошо работает с рядами, в которых разброс значений не очень велик (это хорошо прослеживалось на примере роста, где интервал был всего 18 см). Если бы ряд наших измерений был значительнее, а варьирование роста было сильнее, то стандартное отклонение стало непоказательным и нам потребовался бы критерий, который может отразить разброс в относительных единицах (т. е. в процентах, относительно средней величины).

Для этих целей предусмотрены абсолютные и относительные показатели вариации в статистике, характеризующие вариационные масштабы:

  • Размах вариации.

Квадратический коэффициент вариации (обозначается как Vσ) – это отношение среднеквадратичного отклонения к среднеарифметическому значению, выраженное в процентах.

Для нашего примера со студентами, определить Vσ несложно - он будет равен 3,18%. Основная закономерность – чем больше будет изменяться значение коэффициента, тем больше разброс вокруг среднего значения и тем менее однородна выборка.

Преимущество коэффициента вариации в том, что он показывает однородность значений (асимметрия) в ряду наших измерений, кроме того, на него не оказывают влияния масштаб и единицы измерения. Эти факторы делают коэффициент вариации особенно популярным в биомедицинских исследованиях. Будет считаться , что эксцесс значения Vσ =33% отделяет однородные выборки от неоднородных.

Если найти в ряду значений роста (первый пример) максимальное и минимальное значения, то получим размах вариации (обозначается как R, иногда ещё называется колеблемостью). В нашем примере – это значение будет равно 18 см. Эта характеристика используется для расчёта коэффициента осцилляции:

Коэффициент осцилляции – показывает как размах вариации будет относиться к среднему арифметическому ряда в процентном отношении.

Расчёты в Microsoft Ecxel 2016

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию :

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

Коэффициент вариации в статистике применяется для сравнения разброса двух случайных величин с разными единицами измерения относительно ожидаемого значения. В итоге можно получить сопоставимые результаты. Показатель наглядно иллюстрирует однородность временного ряда.

Коэффициент вариации используется также инвесторами при портфельном анализе в качестве количественного показателя риска, связанного с вложением средств в определенные активы. Особенно эффективен в ситуации, когда у активов разная доходность и различный уровень риска. К примеру, у одного актива высокая ожидаемая доходность, а у другого – низкий уровень риска.

Как рассчитать коэффициент вариации в Excel

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему арифметическому. Для расчета в статистике используется следующая формула:

CV = σ / ǩ,

  • CV – коэффициент вариации;
  • σ – среднеквадратическое отклонение по выборке;
  • ǩ – среднеарифметическое значение разброса значений.

Коэффициент вариации позволяет сравнить риск инвестирования и доходность двух и более портфелей активов. Причем последние могут существенно отличаться. То есть показатель увязывает риск и доходность. Позволяет оценить отношение между среднеквадратическим отклонением и ожидаемой доходностью в относительном выражении. Соответственно, сопоставить полученные результаты.

При принятии инвестиционного решения необходимо учитывать следующий момент: когда ожидаемая доходность актива близка к 0, коэффициент вариации может получиться большим. Причем показатель значительно меняется при незначительном изменении доходности.

В Excel не существует встроенной функции для расчета коэффициента вариации. Но можно найти частное от стандартного отклонения и среднего арифметического значения. Рассмотрим на примере.

Доходность двух ценных бумаг за предыдущие пять лет:

Наглядно это можно продемонстрировать на графике:


Обычно показатель выражается в процентах. Поэтому для ячеек с результатами установлен процентный формат.

Значение коэффициента для компании А – 33%, что свидетельствует об относительной однородности ряда. Формула расчета коэффициента вариации в Excel:


Сравните: для компании В коэффициент вариации составил 50%: ряд не является однородным, данные значительно разбросаны относительно среднего значения.



Интерпретация результатов

Прежде чем включить в инвестиционный портфель дополнительный актив, финансовый аналитик должен обосновать свое решение. Один из способов – расчет коэффициента вариации.

Ожидаемая доходность ценных бумаг составит:

Среднеквадратическое отклонение доходности для активов компании А и В составляет:

Ценные бумаги компании В имеют более высокую ожидаемую доходность. Они превышают ожидаемую доходность компании А в 1,14 раза. Но и инвестировать в активы предприятия В рискованнее. Риск выше в 1,7 раза. Как сопоставить акции с разной ожидаемой доходностью и различным уровнем риска?

Для сопоставления активов двух компаний рассчитан коэффициент вариации доходности. Показатель для предприятия В – 50%, для предприятия А – 33%. Риск инвестирования в ценные бумаги фирмы В выше в 1,54 раза (50% / 33%). Это означает, что акции компании А имеют лучшее соотношение риск / доходность. Следовательно, предпочтительнее вложить средства именно в них.

Таким образом, коэффициент вариации показывает уровень риска, что может оказаться полезным при включении нового актива в портфель. Показатель позволяет сопоставить ожидаемую доходность и риск. То есть величины с разными единицами измерения.

Показатели вариации

Понятие вариации

Вариация - это наличие различий у отдельных единиц сово­купности по какому-либо признаку.

Эта категория занимает особое место в статистической науке, ибо именно наличие вариации единиц совокупности предопределяет необходимость статистики. Если бы отдельные единицы сово­купности имели они и те же значения признаков (например, рост, возраст у всех живущих людей был бы одинаковый), то для изу­чения данной совокупности по этим признакам достаточно было бы изучить только одну единицу совокупности. Однако зачастую значения признаков колеблются, изменяются при переходе от од­ной единицы к другой. Как правило, вариация является порожде­нием следующих причин:

Своеобразие условий, в которых происходит развитие от­дельных единиц совокупности;

Неравномерность развития отдельных единиц.

Например, причиной вариации роста у отдельно взятых людей является генетическая особен­ность каждого организма (основная причина), особенности питания, экологическая обстановка и т.д.; вариация урожайности может быть вызвана климатическими, почвенными особенностями зоны про­израстания, режима и возможности полива, качеством посадочного материала и т.д.

Вариация существует во времени и в пространстве.

Под вариаци­ей в пространстве понимается колеблемость значений признака по отдельным территориям (урожайность пшеницы в разных ре­гионах).

Под вариацией во времени подразумевается объективное измене­ние значений признака в разные периоды (или моменты). Напри­мер, со временем изменяется средняя продолжительность пред­стоящей жизни, доходность предприятий отрасли, уровень по­требностей людей и т.д.

Изучение вариации имеет важное значение, так как вариация ха­рактеризует степень однородности совокупности. Однородность совокупности - необходимое условие при расчете большинства статистических показателей, в частности средних величин.

Показатели вариации

Показатели вариации являются необходимым дополнением при расчете средних величин, так как определяют степень однород­ности совокупности.

Система показателей вариации включает следующее:

Размах вариации;

Среднее квадратическое отклонение;

Дисперсия;

Коэффициент вариации.

Значение показателей вариации:

Характеризуются размеры вариации признака;

Показатели вариации дополняют систему средних величин, в которой затушевываются индивидуальные различия;

Показатели вариации позволяют охарактеризовать уровень однородности совокупности;

С помощью показателей вариации, путем сравнения вариа­ции у отдельных признаков (разных), есть возможность измерить взаимосвязь между этими признаками.

Первый показатель, так называемый размах вариации, - наи­более простой из показателей, характеризует абсолютные разме­ры изменения признака и определяется как разница максимально­го и минимального значений признака:

Несмотря на простоту расчета, этот показатель имеет важный не­достаток - учитывает только два приграничных значения. В случае аномальности одного или двух приграничных значений, он может исказить действительную вариацию совокупности.

Для того чтобы избавиться от этого недостатка, рассчитывают отклонение каждой индивидуальной величины от средней по со­вокупности. Таким образом, учитывается значение каждой еди­ницы совокупности. Для того чтобы охарактеризовать это откло­нение одним числом, рассчитывают среднюю из этих значений. Данный показатель носит название среднее абсолютное (линей­ное) отклонение и определяется следующим образом:

Простой вид;

- взвешенный вид (для сгруппированных данных);

где d(L) - среднее абсолютное (линейное) отклонение;

х - индивидуальное значение признака (варианта);

Среднее из значений признака;

п - численность совокупности;

f - частота.

Среднее линейное отклонение характеризует средний размер отклонений индивидуальных значений признака от средней вели­чины. Таким образом, он характеризует абсолютные размеры ва­риации, имеет те же единицы измерения, что и признак, вариа­цию которого характеризует.

Недостаток: ввиду того, что применяется модуль, затруднено проведение математических операций. Поэтому он применяется редко.

Для того чтобы избавиться от недостатка предыдущего показате­ля, разницу между индивидуальным значением и средней возве­дем в квадрат и затем извлечем корень квадратный из полученно­го среднего значения. Полученный показатель будет называться среднее квадратическое отклонение:

- простая.

- взвешенная.

Играет ту же роль, что и среднее абсолютное отклонение, но, имеет перед ним одно преимущество, а именно, с ним проще проводить математические операции. Ввиду этого в 90 случаях из 100 используется этот показатель.

Еще более удобный для математических преобразований показа­тель вариации - дисперсия, который представляет собой сред­нее квадратическое отклонение в квадрате:

- простая,

- взвешенная.

С помощью дисперсии и среднего квадратического отклонения измеряются взаимосвязи между различными признаками. Кроме того, по этим показателям можно сравнивать совокупности в смысле их однородности по одинаковым признакам.

Вывод об однородности совокупности позволяет сделать коэффициент вариации , который может быть рассчитан несколькими способами в зависимости от исходной информации:

Характеризует средний процент отклонений индивидуальных значений признака от средней величины.

,

,

,

где V – коэффициент вариации;

σ – среднее квадратическое отклонение;

d (L) – среднее линейное отклонение;

Х МО – мода (структурная средняя);

Х МЕ – медиана(структурная средняя).

Коэффициент вариации имеет большое значение. Он позволяет сравнивать уровень вариации по различным признакам и используется для характеристики однородности совокупности. Если коэффициент вариации меньше 33%, то совокупность однородна.

Пример расчета показателей вариации.

Распределение студентов вуза по возрасту характеризуются следующими данными (табл. 1):

Таблица 1

Рассчитайте показатели, характеризующие вариацию возраста студентов для каждой формы



обучения. Сравните полученные результаты.

Рассчитаем показатели вариации, характеризующие совокупность студентов очно-заочной формы

обучения.

1. Размах вариации:

R = x max – x min = 31 - 18,5 = 12,5 (лет)

2. Средняя арифметическая:

3. Среднее линейное отклонение:

Возраст отдельно взятого студента отклоняется от среднего по совокупности возраста - 27 лет - на 3 года. То есть можно утверждать, что возраст наибольшего числа студентов не будет выходить за границы интервала: от 24,3 до 30,4 лет.

27,36 - 3,07 < 27,36 < 27,36+ 3,07.

Среднее квадратическое отклонение:

Среднее квадратическое отклонение также характеризует абсолютную величину отклонения индиви­дуального значения от средней. Как правило, значение среднего квадратического отклонения больше среднего линейного отклонения.

Дисперсия:

=13,899

Характеризует квадрат отклонений индивидуального значения от средней величины. Коэффициент вариации:

Средний процент отклонений индивидуальных значений от средней величины составляет 13,6%. Со­вокупность однородна. Сделаем аналогичные расчеты по совокупности студентов дневного отделения. Получаем следующие результаты:

d(L) = 3,40

V = 21,9%

На основании приведенных расчетов можно сделать вывод о том, что совокупность студентов очно-заочного отделения более однородная.

Расчет показателей вариации - достаточно трудоемкий процесс. В некоторых случаях, когда имеется ряд показателей с равноот­стоящими моментами времени или равноинтервальный ряд рас­пределения, расчет может быть упрощен. Сокращенные способы расчета дисперсии базируются на знании свойств дисперсии. Свойства дисперсии:

Если от всех значений варианты х отнять (прибавить) по­стоянное число А, то дисперсия не изменится;

Если каждое значение варианты разделить (умножить) на постоянную величину к, то дисперсия уменьшится (увеличится) в к 2 раз.

Сокращенные способы расчета дисперсии:

2. Способ моментов – применяется только в случае равенства интервалов.

Вариация признака определяется различными факторами, часть этих факторов можно выделить, если статистическую совокупность разделить на группы по определенному признаку. Тогда, наряду с изучением вариации признака по совокупности в целом, можно изучить вариацию для каждой из составляющих ее группы и между этими группами. В простом случае, когда совокупность разделена на группы по одному фактору, изучение вариации достигается посредством вычисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Эмпирический коэффициент детерминации

Эмпирический коэффициент детерминации широко применяется в статистическом анализе и является показателем, представляющим долю межгруппопой дисперсии в результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:

Показывает долю вариации результативного признака у под влиянием факторного признака х, он связан с коэффициентом корреляции квадратичной зависимостью. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи - единице.

Например, когда изучается зависимость производительности труда рабочих от их квалификации коэффициент детерминации равен 0,7, то на 70% вариация производительности труда рабочих обусловлена различиями в их квалификации и на 30% - влиянием прочих факторов.

Эмпирическое корреляционное отношение - это квадратный корень из коэффициента детерминации. Отношение показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение принимает значения от -1 до 1. Если связи нет, то корреляционное отношение равняется нулю, т.е. все групповые средние равняются между собой и межгрупповой вариации нет. Значит, группировочный признак не влияет на образование общей вариации.

Если связь функциональная, то корреляционное отношение равняется единице. В таком случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации нет. Это значит, что группировочный признак полностью определяет вариацию результативного признака.

Чем ближе значение корреляционного отношения к единице, тем сильнее и ближе к функциональной зависимости связь между признаками. Для качественной оценки силы связи на основе показателя эмпирического коэффициента корреляции можно использовать соотношение Чэддока.

Соотношение Чэддока

  • Связь весьма тесная — коэффициент корреляции находится в интервале 0,9 — 0,99
  • Связь тесная — Rxy = 0,7 — 0,9
  • Связь заметная — Rxy = 0,5 — 0,7
  • Связь умеренная — Rxy = 0,3 — 0,5
  • Связь слабая — Rxy = 0,1 — 0,3
Похожие публикации