Понятие о системах массового обслуживания (СМО). Элементы теории массового обслуживания

Рассматриваемая система массового обслуживания (СМО) представляет собой механизм, в котором при помощи специально разработанного для этого комплекса приборов, происходит удовлетворение разнообразных требований, поступающих в данную систему. Ключевым свойством этой системы является количественный параметр числа работающих (обслуживающих) приборов. Оно может колебаться от одного до бесконечности.

В соответствии с тем, имеется ли возможность ожидания обслуживания или нет, различают системы:

СМО, где не нашлось ни одного инструмента (прибора) для удовлетворения требования, поступившего в данный момент времени. В этом случае такое требование теряется;

Система массового обслуживания с ожиданием, которая содержит в себе такой накопитель требований, который способен принять их все, образуя при этом очередь;

Система с ограниченным по емкости накопителем, где эта ограниченность и определяет величину очереди требований, подлежащих удовлетворению. Здесь теряются те требования, которые не могут вместиться в накопитель.

Во всех СМО, выбор требования и его обслуживание производится на основе дисциплины обслуживания. В качестве примера таких моделей обслуживания могут быть:

FCFS/FIFO - система, в которой первое в очереди требование удовлетворяется первым;

LCFS/LIFO - СМО, где первым обслуживается последнее в очереди требование;

Модель random - система удовлетворения требований на основе случайного выбора.

Как правило, такая система имеет очень сложное строение.

Любая система массового обслуживания описывается с помощью следующих понятий и категорий:

Требование — формирование и предъявление запроса на обслуживание;

Входящий поток — все заявки на удовлетворение требований, поступающие в систему;

Время обслуживания — временной интервал, необходимый для полного обслуживания поступившей заявки;

Математическая модель — выраженная в математической форме и с помощью математического аппарата модель данной СМО.

Являясь сложным по структуре феноменом, система массового обслуживания представляет собой предмет теории вероятностей. В рамках этой обширной области выделяется несколько концепций, каждая из которых, это достаточно автономная теория массового обслуживания. В этих теориях, как правило, используется методология

Основоположником одной из самых первых современных СМО является А. Я. Хинчин, который обосновал концепцию потока однородных событий. Затем датский телеграфист, а впоследствии - ученый Агнер Эрланг, разработал свою концепцию (на примере работы телефонистов, ожидающих запроса на удовлетворение соединения), в которой уже выделил СМО с ожиданием и без ожидания.

Построение современных технологий массового обслуживания осуществляется преимущественно Есть также системы, исследование которых ведется но такой подход довольно сложен. К СМО относятся и те системы, которые можно исследовать при помощи методов статистики - статистического моделирования и статистического анализа.

Каждая такая система массового обслуживания априори предполагает, что имеются некоторые стандартные пути, по которым проходят заявки субъектов на удовлетворение. Эти заявки проходят через так называемые каналы обслуживания, которые многообразны по своему назначению и характеристикам. Заявки приходят преимущественно хаотично по времени, их много, поэтому устанавливать логические и причинные связи между ними чрезвычайно сложно. Научный вывод, на этом основании, состоит в том, что СМО, в своем подавляющем большинстве, функционируют на принципах случайности.

Во многих областях экономики, финансов, производства и быта важную роль играют системы массо-вого обслуживания (СМО), т.е. такие системы, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, а с другой стороны, происходит удовлетворение этих запросов.

В качествепримеров СМО в финансово-экономи-ческой сфере можно привести системы, представляющие собой: банки различных типов, страховые организа-ции, налоговые инспекции, ау-диторские службы, различные системы связи (в том числе те-лефонные станции), погрузочно-разгрузочные комплексы (товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, предприятия массового питания, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы).

Такие сис-темы как компьютерные сети, системы сбора, хранения и обра-ботки информации, транспортные системы, автоматизирован-ные производственные участки, поточные линии также могут рассматриваться как своеобразные СМО.

В торговле выполняется множество операций в процессе движе-ния товарной массы из сферы производства в сферу потребления. Такими операциями являются: погрузка и выгрузка товаров, пере-возка, упаковка, фасовка, хранение, выкладка, продажа и т. д. Для торговой деятельности характерны массовое поступление товаров, денег, массовое обслу-живание покупателей и т. п., а также выполнение соответствующих операций, которые носят случайный характер. Все это создает не-равномерность в работе торговых организаций и предприятий, порождает недогрузки, простои и перегрузки. Много времени отни-мают очереди, например, у покупателей в магазинах, водителей ав-томашин на товарных базах, ожидающих разгрузки или погрузки.

В связи с этим возникают задачи анализа работы, например тор-гового отдела, торгового предприятия или секции, для оценки их деятельности, выявления недостатков, резервов и принятия в конеч-ном итоге мер, направленных на увеличение ее эффективности. Кроме того, возникают задачи, связанные с созданием и внедре-нием более экономичных способов выполнения операций в пределах секции, отдела, торгового предприятия, овощной базы, управления торговли и т. п. Следовательно, в организа-ции торговли методы теории массового обслуживания позволяют определить оптимальное количество торговых точек данного профиля, численность про-давцов, частоту завоза товаров и другие параметры.

Другим ха-рактерным примером систем массового обслуживания могут служить склады или базы снабженческо-сбытовых организа-ций, и задача теории массового обслуживания сводится к тому, чтобы установить оптимальное соотношение между числом по-ступающих на базу требований на обслуживание и числом об-служивающих устройств, при котором суммарные расходы на обслуживание и убытки от простоя транспорта были бы мини-мальными. Теория массового обслуживания может найти при-менение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку - как требование.


Основные характеристики СМО

СМО включаетследующие элементы : источник требований, входящий поток требований, очередь, обслуживающее устройство (канал обслуживания), выходящий поток требований (обслуженных заявок).

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы, в основном, не регулярно, а в случайные моменты времени. Обслуживание заявок также длится не постоянное, заранее известное время, а случайное время, которое зависит от многих случайных причин. После обслуживания заявки канал освобожден и готов к приему следующей заявки.

Случайный характер потока заявок и времени их обслуживания приводит к не-равномерной загруженности СМО: в некоторые промежутки времени на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, в некоторые же дру-гие интервалы времени при свободных каналах на входе CMО заявок не будет, что приводит к недогрузке СМО, т.е. к про-стаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо "становятся" в очередь, либо по какой-то причине невоз-можности дальнейшего пребывания в очереди покидают СМО необслуженными.

Схема СМО изображена на рисунке 5.1.

Рисунок 5.1 - Схема системы массового обслуживания

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, которые называют каналами обслуживания . Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, продавцы), линии связи, автомашины и т.д.

Каждая СМО в зависимости от своих параметров: характера потока заявок, числа каналов обслуживания и их производи-тельности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

СМО явля-ется предметом изучения теории массового обслуживания .

Цель теории массового обслуживания — выработка рекомен-даций по рациональному построению СМО, рациональной ор-ганизации их работы и регулированию потока заявок для обес-печения высокой эффективности функционирования СМО.

Для достижения этой цели ставятся задачи теории массового обслуживания, состоящие в установлении зависимостей эффек-тивности функционирования СМО от ее организации (пара-метров).

В качестве характеристик эффективности функционирова-ния СМО можно выбрать три основные группы (обычно средних) показателей:

1. Показатели эффективности использования СМО:

1.1. Абсолютная пропускная способность СМО - среднее число заявок, которое сможет обслужить СМО в единицу времени.

1.2. Относительная пропускная способность СМО - от-ношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу посту-пивших заявок за это же время.

1.3. Средняя продолжительность периода занятости СМО.

1.4. Коэффициент использования СМО — средняя доля времени, в течение которого СМО занята обслужи-ванием заявок.

2. Показатели качества обслуживания заявок :

2.1. Среднее время ожидания заявки в очереди.

2.2. Среднее время пребывания заявки в СМО.

2.3. Вероятность отказа заявке в обслуживании без ожи-дания.

2.4. Вероятность того, что поступившая заявка немедлен-но будет принята к обслуживанию.

2.5. Закон распределения времени ожидания заявки в очереди.

2.6. Закон распределения времени пребывания заявки в СМО.

2.7. Среднее число заявок, находящихся в очереди.

2.8. Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары "СМО — потребитель" , где под "потребителем" понимают всю совокупность заявок или некий их источник (например, средний доход, при-носимый СМО в единицу времени, и т.п.).

Случайный характер потока заявок и длительности их об-служивания порождает в СМО случайный процесс . Поскольку моменты времени T i и интервалы времени поступле-ния заявок T , продолжительность операций обслуживания Т обс , про-стоя в очереди T оч , длина очереди l оч — случайные величины, то характеристики состояния систем массового обслуживания носят вероятностный характер. Поэтому для решения задач теории массового обслужива-ния необходимо этот случайный процесс изучить, т.е. постро-ить и проанализировать его математическую модель.

Математическое изучение функционирования СМО значи-тельно упрощается, если протекающий в ней случайный про-цесс является марковским . Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воз-действием которых происходят переходы системы из состояния в состояние, были (простейшими) пуассоновскими .

Простейший поток обладает тремя основными свойствами : ординарности, стационарности и отсутствия последействия.

Ординарность потока означает практическую невозмож-ность одновременного поступления 2-х и более требований. На-пример, достаточно малой является вероятность того, что в магазине самообслуживания одно-временно выйдут из строя несколько кассовых аппаратов.

Стационарным называется поток, для которого математиче-ское ожидание числа требований, поступающих в систему в едини-цу времени (обозначим λ ), не меняется во времени. Таким образом, вероятность поступления в систему определенного количества тре-бований в течение заданного промежутка времени ?T зависит от его величины и не зависит от начала его отсчета на оси времени.

Отсутствие последействия означает, что число требова-ний, поступивших в систему до момента T , не определяет того, сколько требований поступит в систему за время (T + ?T) . Например, если в кассовом аппарате в данный момент произо-шел обрыв кассовой ленты и он устранен кассиром, то это не влияет на воз-можность нового обрыва на данной кассе в следующий момент и тем более на вероятность возникновения обрыва на других кассовых аппаратах.

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона , т. е. вероятность по-ступления за время T ровно k требований задается формулой

, (5.1)

где λ интенсивность потока заявок , т. е. среднее число заявок, поступающих в СМО в единицу времени,

, (5.2)

где τ — среднее значение интервала времени между двумя со-седними заявками.

Для такого потока заявок время между двумя соседними заяв-ками распределено экспоненциально с плотностью вероятности

Случайное время ожидания в очереди начала обслуживания то-же можно считать распределенным экспоненциально:

, (5.4)

где ν интенсивность движения очереди , т. е. среднее число зая-вок, приходящих на обслуживание в единицу времени,

где Т оч - среднее значение времени ожидания в очереди.

Выходной поток заявок связан с потоком обслуживания в кана-ле, где длительность обслуживания Т обс является случайной величи-ной и подчиняется во многих случаях показательному закону рас-пределения с плотностью

, (5.6)

где μ интенсивность потока обслуживания , т. е. среднее число заявок, обслуживаемых в единицу времени,

. (5.7)

Важной характеристикой СМО, объединяющей показатели λ и μ , является интенсивность нагрузки, которая показывает степень согласования указанных потоков зая-вок:

Перечисленные показатели k, τ, λ, l оч, Т оч, ν, Т обс, μ, ρ, Р k являются наиболее общими для СМО.

В практике человеческой деятельности большое место занимают процессы массового обслуживания, которые возникают в системах, предназначенных для многоразового использования при решении однотипных задач. Такие системы получили название систем массового обслуживания (СМО). Примерами таких систем являются телефонные системы, вычислительные комплексы, системы автотранспортного, авиационного, ремонтного обслуживания, магазины, билетные кассы и т.п.

Каждая система состоит из определенного числа обслуживающих единиц (приборов, аппаратов, устройств" пунктов, станций), которые называются каналами обслуживания. По числу каналов СМО подразделяют на одноканальные и многоканальные. Схема одноканальной системы массового обслуживания представлена на рис. 6.2.

Заявки в систему поступают обычно не регулярно, а случайно, образуя случайный поток заявок (требований). Само обслуживание каждого требования может занимать либо определенное время, либо, что бывает чаще, неопределенное время. Случайный характер приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Рис. 6.2.

Целью исследования систем массового обслуживания является анализ качества их функционирования и выявление возможностей его улучшения. При этом понятие "качество функционирования" в каждом отдельном случае будет иметь свой конкретный смысл и выражаться различными количественными показателями. Например, такими количественными показателями, как величина очереди на обслуживание, среднее время обслуживания, ожидания обслуживания или нахождения требования в обслуживающей системе, время простоя обслуживающих аппаратов; уверенность, что все поступившие в систему требования будут обслужены.

Таким образом, под качеством функционирования системы массового обслуживания понимают не собственно качество выполнения той или иной работы, запрос на которую поступил, а степень удовлетворения потребности в обслуживании.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

Классификация систем массового обслуживания

Первым признаком, позволяющим классифицировать задачи массового обслуживания, является поведение требований, поступивших в обслуживающую систему в тот момент, когда все аппараты заняты.

В некоторых случаях требование, попавшее в систему в тот момент, когда все аппараты заняты, не может ждать освобождения их и покидает систему не обслуженным, т.е. требование теряется для данной обслуживающей системы. Такие обслуживающие системы называются системами с потерями, а сформулированные по ним задачи - задачами обслуживания для систем с потерями.

Если же требование, попав в систему, становится в очередь и ждет освобождения аппарата, то такие системы называются системами с ожиданием, а соответствующие задачи называются задачами обслуживания в системах с ожиданием. СМО с ожиданием подразделяется на разные виды в зависимости от того, как организована очередь: с ограниченной или неограниченной длиной очереди, с ограниченным временем ожидания и т.п.

СМО различаются и по числу требований, которые одновременно могут находиться в обслуживающей системе. Выделяют:

  • 1) системы с ограниченным потоком требований;
  • 2) системы с неограниченным потоком требований.

В зависимости от форм внутренней организации обслуживания в системе выделяют:

  • 1) системы с упорядоченным обслуживанием;
  • 2) системы с неупорядоченным обслуживанием.

Важным этапом исследования СМО является выбор критериев, характеризующих изучаемый процесс. Выбор зависит от типа исследуемых задач, от цели, которая преследуется решением.

Наиболее часто на практике встречаются системы, в которых поток требований близок к простейшему, а время обслуживания подчиняется показательному закону распределения. Эти системы наиболее полно разработаны в теории массового обслуживания.

В условиях предприятия типичными являются задачи с ожиданием, с конечным числом обслуживающих аппаратов, с ограниченным потоком требований и с неупорядоченным обслуживанием.

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания – специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Применение различных математических методов к формализации. Акцент на сложную систему - непредсказуемую. Носитель неопределенности является человек.

Характерным примером стохастических (случайные, вероятностные) задач являются модели систем массового обслуживания.

СМО имеют повсеместное распространение. Это телефонные сети, автозаправочные станции, предприятия бытового обслуживания, билетные кассы, торговые мероприятия и т.д.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если такое имеется в блоке ожидания. Цикл функционирования СМО подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами СМО могут служить:

    посты технического обслуживания автомобилей;

    посты ремонта автомобилей;

    аудиторские фирмы и т.д.

Основоположником теории массового обслуживания, в частности, теории очередей, является известный датский ученый А.К.Эрланг (1878-1929), который исследовал процессы обслуживания на телефонных станциях.

Системы, в которых имеют место процессы обслуживания, называют системами массового обслуживания (СМО).

Чтобы описать систему массового обслуживания, необходимо задать:

- входной поток заявок;

- дисциплину обслуживания;

- время обслуживания

- количество каналов обслуживания.

Входной поток требований (заявок) описывается путем выявления как вероятностного закона распределения моментов поступления требований в систему, так и количества требований в каждом поступлении.

При задании дисциплины обслуживания (ДО) необходимо описать правила постановки требований в очередь и обслуживания их в системе. При этом длина очереди может быть как ограниченной, так и неограниченной. В случае ограничений на длину очереди поступившая на вход СМО заявка получает отказ. Чаще всего используются ДО, определяемые следующими правилами:

первым пришел – первым обслуживаешься;

    пришел последним - обслуживаешься первым; (коробочка для теннисных шариков, стек в технике)

    случайный отбор заявок;

    отбор заявок по критерию приоритетности.

Время обслуживания заявки в СМО является случайной величиной. Наиболее распространенным законом распределения является экспоненциальный закон.  - скорость обслуживания. =количество заявок обслуживания/ед. времени.

Каналы обслуживания , могут быть расположены параллельно и последовательно. При последовательном расположении каналов каждая заявка проходит обслуживание на всех каналах последовательно. При параллельном расположении каналов обслуживание производится на всех каналах одновременно по мере их освобождения.

Обобщенная структура СМО представлена на рис.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности СМО, и эффективностью ее функционирования.

Проблемы проектирования СМО.

К задачам определения характеристик структуры СМО относятся задача выбора количества каналов обслуживания (базовых элементов {Ф i }), задача определения способа соединения каналов (множества элементов связей {Hj}), а также задача определения пропускной способности каналов.

1). Выбор структуры . Если каналы работают параллельно, то проблема выбора Str сводится к определению количества каналов в обслуживающей части исходя из условия обеспечения работоспособности СМО. (Если очередь не является бесконечно растущей).

Отметим, что при определении количества каналов системы, в случае их параллельного расположения, необходимо соблюдать условие работоспособности системы . Обозначим:  - среднее число заявок, поступающих в единицу времени, т.е. интенсивность входного потока;  - среднее число заявок, удовлетворяемых в единицу времени, т.е. интенсивность обслуживания; S - количество каналов обслуживания. Тогда условие работоспособности СМО запишется

или
. Выполнение этого условия позволяет вычислить нижнюю границу количества каналов.

В случае, если
, система не справляется с очередью. Очередь при этом растет безгранично.

2). Необходимо определить критерий эффективности функционирования СМО с учетом затрат на потери времени как со стороны заявок, так и со стороны обслуживающей части.

В качестве показателей эффективности функционирования СМО рассматриваются следующие три основные группы показателей:

1. Показатели эффективности использования СМО.

    Абсолютная пропускная способность СМО - среднее число заявок, которое может обслужить СМО в единицу времени.

    Относительная пропускная способность СМО – отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это время.

    Средняя продолжительность периода занятости СМО.

    Коэффициент использования СМО - средняя доля времени, в течение которого СМО занята обслуживанием заявок.

2. Показатели качества обслуживания заявок.

    Среднее время ожидания заявки в очереди.

    Среднее время пребывания заявки в СМО.

    Вероятность отказа заявке в обслуживании без ожидания.

    Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию.

    Закон распределения времени ожидания заявки в очереди.

    Закон распределения времени пребывания заявки в СМО.

    Среднее число заявок, находящихся в очереди.

    Среднее число заявок, находящихся в СМО.

3. Показатели эффективности функционирования пары «СМО - потребитель».

При выборе критерия эффективности функционирования СМО необходимо учесть двойственный подход к рассмотрению систем массового обслуживания. Например, работу универсама, как СМО, можно рассматривать с противоположных сторон. С одной, традиционно принятой, стороны покупатель, ожидающий свою очередь у кассы, представляет собой заявку на обслуживание, а кассир - канал обслуживания. С другой стороны, кассир, который ожидает покупателей, может быть рассмотрен в качестве заявки на обслуживание, а покупатель - обслуживающее устройство, способное удовлетворить заявку, т.е. подойти к кассе и прекратить вынужденный простой кассира. (традиционно – покупателей > чем кассиров, если кассиров > чем покупателей, они ждут покупателей).

С
учетом этого целесообразно минимизировать обе части СМО одновременно.

Применение такого двойственного подхода предполагает необходимость учета при формировании критерия эффективности не только перечисленных выше показателей в отдельности, но и одновременно нескольких показателей, отражающих интересы как обслуживающей, так и обслуживаемой подсистем СМО. Например, показано, что наиболее важным критерием эффективности в задачах массового обслуживания является суммарное время нахождения клиента в очереди, с одной стороны, и простоя каналов обслуживания - с другой.

Классификация систем массового обслуживания

1. По характеру обслуживания выделяют следующие виды СМО:

1.1. Системы с ожиданием или системы с очередью . Требования, поступившие в систему и не принятые немедленно к обслуживанию, накапливаются в очереди. Если каналы свободны, то заявка обслуживается. Если же все каналы заняты в момент поступления заявки, то очередная заявка будет обслужена после завершения обслуживания предыдущей. Такая система называется полнодоступной (с неограниченной очередью).

Существуют системы с автономным обслуживанием, когда обслуживание начинается в определенные моменты времени;

      Системы с ограниченной очередью . (ремонт в гараже)

      Системы с отказами . Все заявки, прибывшие в момент обслуживания заявки, получают отказ. (ГТС)

      Системы с групповым входным потоком и групповым обслуживанием . В таких системах заявки поступают группами в моменты времени, обслуживание также происходит группами.

2. По количеству каналов обслуживания СМО подразделяются на следующие группы.

Одноканальные СМО.

Многоканальные СМО . Обслуживание очередной заявки может начаться до окончания обслуживания предыдущей заявки. Каждый канал действует как самостоятельное обслуживающее устройство.

3. По кругу обслуживаемых объектов различают два вида.

Замкнутые СМО. Замкнутая система массового обслуживания - это система массового обслуживания, в которой обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Примерами замкнутой СМО являются ремонтные мастерские, сберегательные банки.

Открытые СМО.

4. По количеству этапов обслуживания различают однофазные и многофазные СМО.

Однофазные СМО - это однородные системы, которые выполняют одну и ту же операцию обслуживания.

Многофазные СМО - это системы, в которых каналы обслуживания расположены последовательно и выполняют различные операции обслуживания. Примером многофазной СМО являются станции технического обслуживания автомобилей.

Приведенная классификация СМО является условной. На практике чаще всего СМО выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

Похожие публикации