Если ряд сходится то предел. Признаки сходимости числовых рядов

Определение числового ряда и его сходимости.

Необходимый признак сходимости

Пусть – бесконечная последовательность чисел.

Определение. Выражение

, (1)

или, что то же самое, , называется числовым рядом , а числа https://pandia.ru/text/79/302/images/image005_146.gif" width="53" height="31">членами ряда. Член с произвольным номером называется n -м, или общим членом ряда .

Само по себе выражение (1) никакого определенного числового смысла не имеет, потому что, вычисляя сумму, мы каждый раз имеем дело лишь с конечным числом слагаемых. Определить смысл этого выражения наиболее естественно следующим образом.

Пусть дан ряд (1).

Определение. Сумма n первых членов ряда

называется n -й частичной суммой ряда. Образуем последовательность частичных сумм:

font-size:14.0pt">С неограниченным увеличением числа n в сумме учитывается все большее число членов ряда. Поэтому разумно дать такое определение.

Определение. Если при существует конечный предел последовательности частичных сумм https://pandia.ru/text/79/302/images/image011_76.gif" width="103" height="41"> называется его суммой .

Если последовательность https://pandia.ru/text/79/302/images/image013_77.gif" width="80" height="31">, 2) если колеблющаяся. В обоих случаях говорят, что ряд суммы не имеет.

Пример 1. Рассмотрим ряд, составленный из членов геометрической прогрессии:

, (2)

где – называется первым членом прогрессии, а font-size:14.0pt"> Частичная сумма этого ряда при font-size:14.0pt">font-size:14.0pt">Отсюда:

1) если , то

font-size:14.0pt">т. е. ряд геометрической прогрессии сходится и его сумма .

В частности, если , ряд сходится и его сумма .

При https://pandia.ru/text/79/302/images/image026_42.gif" width="307" height="59 src="> также сходится и его сумма .

2) если , то , т. е. ряд (2) расходится.

3) если , то ряд (2) принимает вид font-size:14.0pt"> и , т. е. ряд расходится (при font-size:18.0pt">) .

4) если https://pandia.ru/text/79/302/images/image036_32.gif" width="265" height="37"> . Для этого ряда

https://pandia.ru/text/79/302/images/image038_28.gif" width="253" height="31 src=">,

т. е..gif" width="67" height="41"> не существует, следовательно, ряд также расходится (при ) .

Вычисление суммы ряда непосредственно по определению очень неудобно из-за трудности явного вычисления частичных сумм font-size:14.0pt"> и нахождения предела их последовательности. Но, если установлено, что ряд сходится, его сумму можно вычислить приближенно, т. к. из определения предела последовательности следует, что при достаточно больших . Поэтому при исследовании рядов достаточно

1) знать приемы, позволяющие констатировать сходимость ряда без нахождения его суммы;

2) уметь определить font-size:14.0pt">.gif" width="16 height=24" height="24"> с определенной точностью.

Сходимость числовых рядов устанавливается с помощью теорем, которые называются признаками сходимости.

Необходимый признак сходимости

Если ряд сходится, то его общий член стремится к нулю, т. е. font-size:14.0pt">.gif" width="61 height=63" height="63"> расходится.

Пример 2. Доказать, что ряд 0 " style="border-collapse:collapse">

;

;

;

.

Решение.

А) https://pandia.ru/text/79/302/images/image051_28.gif" width="176" height="81 src="> расходится.

и поэтому ряд расходится. При решении использовался второй замечательный

предел: (подробнее см. ).

В) font-size:14.0pt">, т. е. последовательность

– бесконечно

малая. Так как при font-size:14.0pt">~ (см. ), то ~ .

Учитывая это, получим:

значит, ряд расходится.

Г) font-size:14.0pt">,

следовательно, ряд расходится.

Условие является необходимым, но не достаточным условием сходимости ряда: существует множество рядов, для которых , но которые тем не менее расходятся.

Пример 3. Исследовать сходимость ряда font-size:14.0pt"> Решение. Заметим, что https://pandia.ru/text/79/302/images/image066_20.gif" width="119" height="59 src=">, т. е. необходимое условие сходимости выполнено. Частичная сумма

left">

– раз

поэтому font-size:14.0pt">, а это значит, что ряд расходится по определению.

Достаточные признаки сходимости знакоположительных рядов

Пусть . Тогда ряд font-size:14.0pt"> Признак сравнения

Пусть и – знакоположительные ряды. Если для всех выполняется неравенство , то из сходимости ряда следует сходимость ряда , а из расходимости ряда https://pandia.ru/text/79/302/images/image074_19.gif" width="55" height="60">.

Этот признак остается в силе, если неравенство https://pandia.ru/text/79/302/images/image072_18.gif" width="60" height="24">, а лишь начиная с некоторого номера . Его можно проинтерпретировать следующим образом: если больший ряд сходится, то меньший тем более сходится; если расходится меньший ряд, то больший также расходится.

Пример 4. Исследовать сходимость ряда 0 " style="margin-left:50.4pt;border-collapse:collapse">

;

Решение.

А) Заметим, что font-size:14.0pt"> для всех . Ряд с общим членом

сходится, т. к. является рядом геометрической прогрессии со знаменателем (см. пример 1), поэтому данный ряд сходится по признаку сравнения.

Б) Сравним ряд с рядом ..gif" width="91" height="29 src=">.gif" width="87" height="59"> расходится, значит, данный ряд также расходится.

Несмотря на простоту формулировки признака сравнения, на практике более удобна следующая теорема, являющаяся его следствием.

Предельный признак сравнения

Пусть https://pandia.ru/text/79/302/images/image071_17.gif" width="53" height="60 src="> – знакоположительные ряды. Если существует конечный и не равный нулю предел , то оба ряда и

одновременно сходятся или одновременно расходятся.

В качестве ряда, используемого для сравнения с данным, часто выбирают ряд вида . Такой ряд называется рядом Дирихле . В примерах 3 и 4 было показано, что ряд Дирихле с и расходится. Можно пока-

зать, что ряд font-size:14.0pt"> .

Если , то ряд называется гармоническим . Гармонический ряд расходится.

Пример 5. Исследовать на сходимость ряд с помощью предельного признака сравнения, если

;

;

;

Решение. а) Так как при достаточно больших https://pandia.ru/text/79/302/images/image101_9.gif" width="31" height="23 src=">, а

~ , то ~ font-size:14.0pt">сравнения с данным гармонический ряд font-size:14.0pt">, т. е. .

font-size:14.0pt"> Поскольку предел конечен и отличен от нуля и гармонический ряд расходится, то расходится и данный ряд.

Б) При достаточно больших https://pandia.ru/text/79/302/images/image109_10.gif" width="111" height="31 src=">.gif" width="129" height="31 src=">.gif" width="132" height="64 src="> – общий член ряда, с которым будем сравнивать данный:

Font-size:14.0pt">Ряд сходится (ряд Дирихле с font-size:16.0pt">) , поэтому данный ряд также сходится.

В) , поэтому бесконечно малую font-size:14.0pt"> можно

заменить на эквивалентную ей при величину (https://pandia.ru/text/79/302/images/image058_20.gif" width="13" height="21 src="> при font-size: 20.0pt">) . ;

;

;

г )

;

.

1

Как мы уже знаем математический анализ, занимается проблемами изучения множества объектов, таких как: числа, переменные, функции, последовательности, ряды и др. При изучении свойств того или иного объекта могут возникать пробелы или “пустоты". Это возникает тогда, когда наука не может объяснить: “Почему происходит так, а не иначе? ”. Такой казус существовал некоторое время и при изучении рядов, а точнее при изучении расходящихся рядов .

При изучении рядов заданному числовому ряду

(А)

в качестве его суммы мы приписывали предел её частичной суммы

, в предположении, что этот предел существует и конечен. “Колеблющийся" расходящийся ряд оказывался лишенным суммы и подобные ряды, как правило, из рассмотрения исключали. Естественно возникает вопрос о возможности суммирования расходящихся рядов в некоем новом смысле, конечно отличном от обычного. Этот вопрос возник ещё до второй половины XIX века. Некоторые методы такого суммирования оказались довольно-таки плодотворными.

В данной своей работе я хочу рассмотреть эти методы, обратить внимание на то, где и какой метод наиболее применим, изучить связь между этими методами. Моя работа состоит из 4 глав, первая из которых содержит основные термины и определения необходимые для работы. Последующие главы рассматривают непосредственно сами методы суммирования. Вторая и третья главы посвящены двум основным методам суммирования: метод степенных рядов и метод средних арифметических , а третья содержит сведения о других существующих, но реже применяемых методах. Каждая из четырех глав содержит примеры суммирования рядов по данному конкретному методу.

Глава 1. Основные понятия теории рядов

1.1 Определения и термины

Как мы упомянули вначале цель нашего исследования - расходящиеся ряды . А что же такое, вообще, ряд ?

Пусть задана некоторая бесконечная последовательность чисел

(1)

Составленный из этих чисел символ

(2)

называется бесконечным рядом , а сами числа (1) - членами ряда. Вместо (2), пользуясь знаком суммы, часто пишут так:

(2а)

Станем последовательно складывать члены ряда, составляя (в бесконечном количестве) суммы;

(3)

их называют частичными суммами ряда.

Конечный или бесконечный предел А частичной суммы ряда ( 2) при :

называют суммой ряда и пишут

,

Придавая тем самым символу (2) или (2а) числовой смысл. Если ряд имеет конечную сумму, его называют сходящимся, в противном же случае (т. е если сумма равна

, либо же суммы вовсе нет) - расходящимся.

Примеры.1) простейшим примером бесконечного ряда является уже знакомая геометрическая прогрессия:

Его частичная сума будет (если

)

Если знаменатель прогрессии, q, по абсолютной величине меньше единицы, то

имеет конечный предел

то есть наш ряд сходится, и

будет его суммой. та же прогрессия дает пример расходящегося ряда. Если , то его суммой будет бесконечность (определенного знака), в прочих случаях суммы вовсе нет. Отметим, в частности, любопытный ряд, который получается при a=1 и q= - 1; …1+ (-1) +1+ (-1) +1+…

Его частичные суммы попеременно равны то 1, то 0.

2) Легко установить расходимость ряда

В самом деле, так как члены его убывают, то его n -я частичная сумма

и растет до бесконечности вместе с n.

1.2 Истоки проблемы

Различные факты из области математического анализа, как, например, расходимость, произведения двух сходящихся рядов, естественно выдвинули вышеупомянутый вопрос: “О возможности суммирования расходящихся рядов, в некоем новом смысле”.

Нужно сказать, что до создания Коши строгой теории пределов (и связанной с нею теории рядов) расходящиеся ряды нередко встречались в математической практике.

Хотя применение их при доказательствах и оспаривалось, тем не менее иной раз делались попытки придавать им даже числовой смысл.

Вспомним, опять, наш колеблющийся ряд

Еще со времен Лейбница в качестве "суммы" приписывалось число

. Эйлер, например, мотивировал это тем, что из разложения

(которое в действительности имеет место лишь для

) при подстановке вместо х единицы как раз и получается

В этом уже содержалось зерно истины, но постановке вопроса не хватало четкости; самый произвол в выборе разложения оставлял открытой возможность, скажем из другого разложения (где п и т - любые, но

ВВЕДЕНИЕ

Методическое пособие предназначено для преподавателей математики в техникумах, а также для студентов второго курса, всех специальностей.

В данной работе излагаются основные понятия теории рядов. Теоретический материал соответствует требованиям Государственного образовательного стандарта среднего профессионального образования (Министерство образования Российской Федерации. М., 2002г.).

Изложение теоретического материала по всей теме сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по-возможности строгом языке. В конце пособия приведены примеры и задания, которые студенты могут выполнять в режиме самоконтроля.

Пособие предназначено для студентов заочной и дневной форм обучения.

Учитывая уровень подготовки учащихся техникума, а также крайне ограниченное число часов (12 часов + 4 ф.), отводимое программой для прохождения высшей математики в техникумах, строгие выводы, представляющие большие трудности для усвоения, опущены, ограничиваясь рассмотрением примеров.

ОСНОВНЫЕ ПОНЯТИЯ

Решение задачи, представленной в математических терминах, например, в виде комбинации различных функций, их производных и интегралов, нужно уметь “довести до числа”, которое чаще всего и служит окончательным ответом. Для этого в различных разделах математики выработаны различные методы.

Раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов.

Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас.

Выражение вида

где ;;;…;;… - члены ряда; - n-ый или общий член ряда, называется бесконечным рядом (рядом).

Если члены ряда:

I. Числовой ряд

1.1. Основные понятия числового ряда.

Числовым рядом называется сумма вида

, (1.1)

где ,,,…,,…, называемые членами ряда, образуют бесконечную последовательность; членназывается общим членом ряда.

составленные из первых членов ряда (1.1), называются частичными суммами этого ряда.

Каждому ряду можно сопоставить последовательность частичных сумм .

Если при бесконечном возрастании номера n частичная сумма ряда стремится к пределу, то ряд называется сходящимся, а число - суммой сходящегося ряда, т.е.

Эта запись равносильна записи

.

Если частичная сумма ряда (1.1) при неограниченном возрастании n не имеет конечного предела (стремится к или ), то такой ряд называется расходящимся .

Если ряд сходящийся , то значение при достаточно большом n является приближенным выражением суммы ряда S .

Разность называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е., и наоборот, если остаток стремится к нулю, то ряд сходится.

1.2. Примеры числовых рядов.

Пример 1. Ряд вида

(1.2)

называется геометрическим .

Геометрический ряд образован из членов геометрической прогрессии.

Известно, что сумма её первых n членов . Очевидно: это n- ая частичная сумма ряда (1.2).

Возможны случаи:

Ряд (1.2) принимает вид:

,ряд расходится;

Ряд (1.2) принимает вид:

Не имеет предела, ряд расходится.

- конечное число, ряд сходится.

- ряд расходится.

Итак, данный ряд сходится при и расходится при .

Пример 2. Ряд вида

(1.3)

называется гармоническим .

Запишем частичную сумму этого ряда:

Сумма больше суммы, представленной следующим образом:

или .

Если , то , или .

Следовательно, если , то , т.е. гармонический ряд расходится.

Пример 3. Ряд вида

(1.4)

называется обобщенным гармоническим .

Если , то данный ряд обращается в гармонический ряд, который является расходящимся.

Если , то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При имеем геометрический ряд, в котором ; он является сходящимся.

Итак, обобщенный гармонический ряд сходится при и расходится при .

1.3. Необходимый и достаточные признаки сходимости.

Необходимый признак сходимости ряда.

Ряд может сходиться только при условии, что его общий член при неограниченном увеличении номера стремится к нулю: .

Если , то ряд расходится – это достаточный признак расходимости ряда.

Достаточные признаки сходимости ряда с положительными членами.

Признак сравнения рядов с положительными членами.

Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого, заведомо расходящегося ряда.

Признак Даламбера.

Если для ряда с положительными членами

выполняется условие , то ряд сходится при и расходится при .

Признак Даламбера не дает ответа, если . В этом случае для исследования ряда применяются другие приемы.

Упражнения.

Записать ряд по его заданному общему члену:

Полагая ,,,…, имеем бесконечную последовательность чисел:

Сложив его члены, получим ряд

.

Поступая так же, получим ряд

.

Придаваязначения 1,2,3,… и учитывая, что,,,…, получим ряд

.

Найти n- ый член ряда по его данным первым членам:

Знаменатели членов ряда, начиная с первого, являются четными числами; следовательно, n- ый член ряда имеет вид .

Числители членов ряда образуют натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, а соответствующие им знаменатели – натуральный ряд чисел, начиная с 3. Знаки чередуются по закону или по закону . Значит, n- й член ряда имеет вид . или .

Исследовать сходимость ряда, применяя необходимый признак сходимости и признак сравнения:

;

.

Находим .

Необходимый признак сходимости ряда выполняется, но для решения вопроса о сходимости нужно применить один из достаточных признаков сходимости. Сравним данный ряд с геометрическим рядом

,

который сходится, так как.

Сравнивая члены данного ряда, начиная со второго, с соответствующими членами геометрического ряда, получим неравенства

т.е. члены данного ряда, начиная со второго, соответственно меньше членов геометрического ряда, откуда следует, что данный ряд сходится.

.

Здесь выполняется достаточный признак расходимости ряда; следовательно, ряд расходится.

Находим .

Необходимый признак сходимости ряда выполняется. Сравним данный ряд с обобщенным гармоническим рядом

,

который сходится, поскольку, следовательно, сходится и данный ряд.

Исследовать сходимость ряда, используя признак Даламбера:

;

.

Подставив в общий член ряда вместо n число n+ 1, получим . Найдем предел отношения -го члена к n- му члену при :

Следовательно, данный ряд сходится.

Значит, данный ряд расходится.

Т.е. ряд расходится.

II. Знакопеременный ряд

2.1 Понятие знакопеременного ряда.

Числовой ряд

называется знакопеременным , если среди его членов имеются как положительные, так и отрицательные числа.

Числовой ряд называется знакочередующимся , если любые два стоящие рядом члена имеют противоположные знаки.

где для всех (т.е. ряд, положительные и отрицательные члены которого следуют друг за другом поочередно). Например,

;

;

.

Для знакочередующихся рядов имеет место достаточный признак сходимости (установленный в 1714г. Лейбницем в письме к И.Бернулли).

2.2 Признак Лейбница. Абсолютная и условная сходимость ряда.

Теорема (Признак Лейбница).

Знакочередующийся ряд сходится, если:

Последовательность абсолютных величин членов ряда монотонно убывает, т.е. ;

Общий член ряда стремится к нулю:.

При этом сумма S ряда удовлетворяет неравенствам

Замечания.

Исследование знакочередующегося ряда вида

(с отрицательным первым членом) сводится путем умножения всех его членов на к исследованию ряда .

Ряды, для которых выполняются условия теоремы Лейбница, называются лейбницевскими (или рядами Лейбница).

Соотношение позволяет получить простую и удобную оценку ошибки, которую мы допускаем, заменяя сумму S данного ряда его частичной суммой .

Отброшенный ряд (остаток) представляет собой также знакочередующийся ряд , сумма которого по модулю меньше первого члена этого ряда, т.е.. Поэтому ошибка меньше модуля первого из отброшенных членов.

Пример. Вычислить приблизительно сумму ряда .

Решение: данный ряд Лейбницевского типа. Он сходится. Можно записать:

.

Взяв пять членов, т.е. заменивна

Сделаем ошибку, меньшую,

чем. Итак,.

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.

Теорема. Пусть дан знакопеременный ряд

Если сходится ряд

составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

Признак сходимости Лейбница для знакочередующихся рядов служит достаточным признаком сходимости знакочередующихся рядов.

Знакопеременный ряд называется абсолютно сходящимся , если сходится ряд, составленный из абсолютных величин его членов, т.е. всякий абсолютно сходящийся ряд является сходящимся.

Если знакопеременный ряд сходится, а составленный из абсолютных величин его членов ряд расходится, то данный ряд называется условно (неабсолютно) сходящимся.

2.3. Упражнения.

Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

и

Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходится ли этот ряд абсолютно или условно.

Ряд , составленный из абсолютных величин данного ряда, является гармоническим рядом, который, расходится. Поэтому данный ряд сходится условно.

Члены данного ряда по абсолютной величине монотонно убывают:

, но

.

Ряд расходится, так как признак Лейбница не выполняется.

Используя признак Лейбница, получим

;,

т.е. ряд сходится.

.

Это геометрический ряд вида, где, который сходится. Поэтому данный ряд сходится абсолютно.

Используя признак Лейбница, имеем

;

, т.е. ряд сходится.

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

, или

.

Это обобщенный гармонический ряд, который расходится, так как. Следовательно, данный ряд сходится условно.

III. Функциональный ряд

3.1. Понятие функционального ряда.

Ряд, членами которого являются функции от , называется функциональным :

Придавая определенное значение , получим числовой ряд

который может быть как сходящимся, так и расходящимся.

Если полученный числовой ряд сходится, то точка называется точкой сходимости функционального ряда; если же ряд расходится – точкой расходимости функционального ряда.

Совокупность числовых значений аргумента , при которых функциональный ряд сходится, называется его областью сходимости .

В области сходимости функционального ряда его сумма является некоторой функцией от :.

Определяется она в области сходимости равенством

, где

Частичная сумма ряда.

Пример. Найти область сходимости ряда .

Решение. Данный ряд является рядом геометрической прогрессии со знаменателем . Следовательно, этот ряд сходится при , т.е. при всех ; сумма ряда равна ;

, при .

3.2. Степенные ряды.

Степенным рядом называется ряд вида

,

где числа называются коэффициентами ряда , а член - общим членом ряда.

Областью сходимости степенного ряда называется множество всех значений , при которых данный ряд сходится.

Число называется радиусом сходимости степенного ряда, если при ряд сходится и притом абсолютно, а при ряд расходится.

Радиус сходимости найдем, используя признак Даламбера:

(не зависит от),

т.е. если степенной ряд сходится при любых , удовлетворяющих данному условию и расходится при .

Отсюда следует, что если существует предел

,

то радиус сходимости рядаравен этому пределу и степенной ряд сходится при , т.е. в промежутке , который называется промежутком (интервалом) сходимости.

Если , то степенной ряд сходится в единственной точке .

На концах промежутка ряд может сходиться (абсолютно или условно), но может и расходиться.

Сходимость степенного ряда при и исследуется с помощью какого-либо из признаков сходимости.

3.3. Упражнения.

Найти область сходимости ряда:

Решение. Найдем радиус сходимости данного ряда:

.

Следовательно, данный ряд абсолютно сходится на всей числовой оси.

Решение. Воспользуемся признаком Даламбера. Для данного ряда имеем:

.

Ряд абсолютно сходится, если или . Исследуем поведение ряда на концах интервала сходимости.

При имеем ряд

При имеем ряд- это тоже сходящийся Лейбницевский ряд. Следовательно, областью сходимости исходного ряда является отрезок.

Решение. Найдем радиус сходимости ряда:

Следовательно, ряд сходится при, т.е. при.

Приимеем ряд, который сходится по признаку Лейбница.

Приимеем расходящийся ряд

.

Следовательно, областью сходимости исходного ряда является промежуток.

IV. Разложение элементарных функций в ряд Маклорена.

Для приложений важно уметь данную функцию разлагать в степенной ряд, т.е. функцию представлять в виде суммы степенного ряда.

Рядом Тейлора для функции называется степенной ряд вида

Если , то получим частный случай ряда Тейлора

который называется рядом Маклорена .

Степенной ряд внутри его промежутка сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем полученные ряды имеют тот же промежуток сходимости, что и исходный ряд.

Два степенных ряда можно почленно складывать и умножать по правилам сложения и умножения многочленов. При этом промежуток сходимости полученного нового ряда совпадает с общей частью промежутков сходимости исходных рядов.

Для разложения функции в ряд Маклорена необходимо:

Вычислить значения функции и ее последовательных производных в точке , т.е.,,,…,;

Составить ряд Маклорена, подставив значения функции и ее последовательных производных в формулу ряда Маклорена;

Найти промежуток сходимости полученного ряда по формуле

, .

Пример 1. Разложить в ряд Маклорена функцию.

Решение. Так как , то, заменяя на в разложении , получим:

Пример 2. Выписать ряд Маклорена функции .

Решение. Так как , то воспользовавшись формулой , в которой заменим на , получим:

,

Пример 3. Разложить в ряд Маклорена функцию .

Решение. Воспользуемся формулой . Так как

, то заменивнаполучим:

, или

где , т.е. .

V. Практические задания для самоконтроля студентов.

При помощи признака сравнения рядов установить сходимость

или расходимость рядов:

  • cходится условно;
  • cходится условно;
  • cходится абсолютно.
  • ;

    ;

    VII. Историческая справка.

    Решение многих задач сводится к вычислению значений функций и интегралов или к решению дифференциальных уравнений, содержащих производные или дифференциалы неизвестных функций.

    Однако точное выполнение указанных математических операций во многих случаях оказывается весьма затруднительным или невозможным. В этих случаях можно получить приближенное решение многих задач с любой желаемой точностью при помощи рядов.

    Ряды представляют собой простой и совершенный инструмент математического анализа для приближенного вычисления функций, интегралов и решений дифференциальных уравнений.

    И стоящим справа функциональным рядом.

    Для того, чтобы вместо знака “” можно было поставить знак равенства, необходимо провести некоторые дополнительные рассуждения, связанные именно с бесконечностью числа слагаемых в правой части равенства и касающиеся области сходимости ряда.

    При формула Тейлора принимает вид, в котором называется формулой Маклорена:

    Колин Маклорен (1698 – 1746), ученик Ньютона, в работе “Трактат о флюксиях” (1742) установил, что степенной ряд, выражающий аналитическую функцию, - единственный, и это будет ряд Тейлора, порожденный такой функцией. В формуле бинома Ньютона коэффициенты при степенях представляют собой значения , где .

    Итак, ряды возникли в XVIII в. как способ представления функций, допускающих бесконечное дифференцирование. Однако функция, представляемая рядом, не называлась его суммой, и вообще в то время не было еще определено, что такое сумма числового или функционального ряда, были только попытки ввести это понятие.

    Например, Л. Эйлер (1707-1783), выписав для функции соответствующий ей степенной ряд, придавал переменной конкретное значение . Получался числовой ряд. Суммой этого ряда Эйлер cчитал значение исходной функции в точке . Но это не всегда верно.

    О том, что расходящийся ряд не имеет суммы, ученые стали догадываться только в XIX в., хотя в XVIII в. многие, и прежде всего Л. Эйлер, много работали над понятиями сходимости и расходимости. Эйлер называл ряд сходящимся, если его общий член стремится к нулю при возрастании .

    В теории расходящихся рядов Эйлер получил немало существенных результатов, однако результаты эти долго не находили применения. Еще в 1826г. Н.Г. Абель (1802 – 1829) называл расходящиеся ряды “дьявольским измышлением”. Результаты Эйлера нашли обоснование лишь в конце XIX в.

    В формировании понятия суммы сходящегося ряда большую роль сыграл французский ученый О.Л. Коши (1789 – 1857); он сделал чрезвычайно много не только в теории рядов, но и теории пределов, в разработке самого понятия предела. В 1826г. Коши заявил, что расходящийся ряд не имеет суммы.

    В 1768г. французский математик и философ Ж.Л. Д’Аламбер исследовал отношение последующего члена к предыдущему в биномиальном ряде и показал, что если это отношение по модулю меньше единицы, то ряд сходится. Коши в 1821г. доказал теорему, излагающую в общем виде признак сходимости знакоположительных рядов, называемых теперь признаком Д’Аламбера.

    Для исследования сходимости знакочередующихся рядов используется признак Лейбница.

    Г.В. Лейбниц (1646 – 1716), великий немецкий математик и философ, наряду с И. Ньютоном является основоположником дифференциального и интегрального исчисления.

    Список литературы:

    Основная:

    1. Богомолов Н.В., Практические занятия по математике. М., “Высшая школа”, 1990 – 495 с.;
    2. Тарасов Н.П., Курс высшей математики для техникумов. М., “Наука”, 1971 – 448 с.;
    3. Зайцев И.Л., Курс высшей математики для техникумов. М., государственное издательство техникумов – теоретической литературы, 1957 - 339 с.;
    4. Письменный Д.Т., Курс лекций по высшей математике. М., “Айрис Пресс”, 2005, часть 2 – 256 с.;
    5. Выгодский М.Я., Справочник по высшей математике. М., “Наука”, 1975 – 872 с.;

    Дополнительная:

    1. Гусак А.А., Высшая математика. В 2-х т., Т.2: Учебное пособие для студентов вузов. Мос., “ТетраСистемс”, 1988 – 448 с.;
    2. Григулецкий В.Г., Лукьянова И.В., Петунина И.А., Математика для студентов экономических специальностей. Часть 2. Краснодар, 2002 – 348 с.;
    3. Григулецкий В.Г. и др. Задачник-практикум по математике. Краснодар. КГАУ, 2003 – 170 с.;
    4. Григулецкий В.Г., Степанцова К.Г., Гетман В.Н., Задачи и упражнения для студентов учетно-финансового факультета. Краснодар. 2001 – 173 с.;
    5. Григулецкий В.Г., Ященко З.В., Высшая математика. Краснодар, 1998 – 186 с.;
    6. Малыхин В.И., Математика в экономике. М., “Инфра-М”, 1999 – 356с.

    Числовые ряды. Сходимость и расходимость числовых рядов. Признак сходимости Даламбера. Знакопеременные ряды. Абсолютная и условная сходимость рядов. Функциональные ряды. Степенные ряды. Разложение элементарных функций в ряд Маклорена .

    Методические указания по теме 1.4:

    Числовые ряды:

    Числовым рядом называется сумма вида

    где числа u 1 , u 2 , u 3 , n n , называемые членами ряда, образуют бесконечную последовательность; член un называется общим членом ряда.

    . . . . . . . . .

    составленные из первых членов ряда (27.1), называются частными суммами этого ряда.

    Каждому ряду можно сопоставить последовательность частичных сумм S 1 , S 2 , S 3 . Если при бесконечном возрастании номера n частичная сумма ряда S n стремится к пределу S , то ряд называется сходящимся, а число S - суммой сходящегося ряда, т.е.

    Эта запись равносильна записи

    Если частичная сумма S n ряда (27.1) при неограниченном возрастании n не имеет конченого предела (в частности, стремится к + ¥ или к - ¥), то такой ряд называется расходящимся

    Если ряд сходится, то значение S n при достаточно большом n является приближенным выражением суммы ряда S .

    Разность r n = S - S n называется остатком ряда. Если ряд сходится, то его остаток стремится к нулю, т.е. r n = 0, и наоборот, если остаток стремится к нулю, то ряд сходится.

    Ряд вида называется геометрическим рядом.

    называется гармоническим.

    если N ®¥, то S n ®¥, т.е. гармонический ряд расходится.

    Пример 1. Записать ряд по его заданному общему члену:

    1) полагая n = 1, n = 2, n = 3, имеем бесконечную последовательность чисел: , , , Сложив ее члены, получим ряд

    2) Поступая так же, получим ряд

    3) Придавая n значения 1, 2, 3, и учитывая,что 1! = 1, 2! = 1 × 2, 3! = 1 × 2 × 3, получим ряд

    Пример 2. Найти n -й член ряда по его данным первым числам:

    1) ; 2) ; 3) .

    Пример 3. Найти сумму членов ряда:

    1) Находим частичные суммы членов ряда:

    Запишем последовательность частичных сумм: …, , … .

    Общий член этой последовательности есть . Следовательно,

    Последовательность частичных сумм имеет предел, равный . Итак, ряд сходится и его сумма равна .

    2) Это бесконечно убывающая геометрическая прогрессия, в которой a 1 = , q= . Используя формулу получим Значит, ряд сходится и его сумма равна 1.

    Сходимость и расходимость числовых рядов. Признак сходимости Даламбера :

    Необходимый признак сходимости ряда. Ряд может сходиться только при условии, что его общий член u n при неограниченном увеличении номера n стремится к нулю:

    Если , то ряд расходится - это достаточный признак растворимости ряда.


    Достаточные признаки сходимости ряда с положительными членами.

    Признак сравнения рядов с положительными членами. Исследуемый ряд сходится, если его члены не превосходят соответствующих членов другого, заведомо сходящегося ряда; исследуемый ряд расходится, если его члены превосходят соответствующие члены другого заведомо расходящегося ряда.

    При исследовании рядов на сходимость и растворимость по этому признаку часто используется геометрический ряд

    который сходится при |q|

    являющийся расходящимся.

    При исследовании рядов используется также обобщенный гармонический ряд

    Если p = 1, то данный ряд обращается в гармонический ряд, который является расходящимся.

    Если p < 1, то члены данного ряда больше соответствующих членов гармонического ряда и, значит, он расходится. При p > 1 имеем геометрический ряд, в котором |q | < 1; он является сходящимся. Итак, обобщенный гармонический ряд сходится при p > 1 и расходится при p £1.

    Признак Даламбера . Если для ряда с положительными членами

    (u n >0)

    выполняется условие , то ряд сходится при l l > 1.

    Признак Даламбера не дает ответа, если l = 1. В этом случае для исследования ряда применяются другие приемы.

    Знакопеременные ряды.

    Абсолютная и условная сходимость рядов:

    Числовой ряд

    u 1 + u 2 + u 3 + u n

    называется знакопеременным, если среди его членов имеются как положительные, так и отрицательные числа.

    Числовой ряд называется знакочередующимся, если любые два стоящие рядом члена имеют противоположные знаки. Этот ряд является частным случаем знакопеременного ряда.

    Признак сходимости для знакочередующихся рядов . Если члены знакочередующегося ряда монотонно убывают по абсолютной величине и общий член u n стремится к нулю при n ® ,то ряд сходится.

    Ряд называется абсолютно сходящимся, если ряд также сходится. Если ряд сходится абсолютно, то он является сходящимся (в обычном смысле). Обратное утверждение неверно. Ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится. Пример 4. Исследовать на сходимость ряд .
    Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем поскольку . Следовательно, данный ряд сходится. Пример 5. Исследовать на сходимость ряд .
    Попробуем применить признак Лейбница: Видно, что модуль общего члена не стремится к нулю при n → ∞ . Поэтому данный ряд расходится. Пример 6. Определить, является ли ряд абсолютно сходящимся, условно сходящимся или расходящимся.
    Применяя признак Даламбера к ряду, составленному из модулей соответствующих членов, находим Следовательно, данный ряд сходится абсолютно.

    Пример 7. Исследовать на сходимость (абсолютную или условную) знакочередующийся ряд:

    1) Члены данного ряда по абсолютной величине монотонно убывают и . Следовательно, согласно признаку Лейбница, ряд сходится. Выясним, сходятся ли этот ряд абсолютно или условно.

    2) Члены данного ряда по абсолютной величине монотонно убывают: , но

    Функциональные ряды:

    Обычный числовой ряд состоит из чисел:

    Все члены ряда - это числа.

    Функциональный же ряд состоит из функций:

    В общий член ряда помимо многочленов, факториалов и т.д. непременно входит буква «икс». Выглядит это, например, так: . Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде:

    Как видите, все члены функционального ряда - это функции .

    Наиболее популярной разновидностью функционального ряда является степенной ряд .

    Степенные ряды:

    Степенным рядом называется ряд вида

    где числа а 0 , а 1 , а 2 , а n называется коэффициентами ряда, а член a n x n - общим членом ряда.

    Областью сходимости степенного ряда называется множество всех значений x , при которых данный ряд сходится.

    Число R называется радиусом сходимости ряда, если при |x| ряд сходится.

    Пример 8. Дан ряд

    Исследовать его сходимость в точках x = 1 и х = 3, x = -2.

    При х = 1 данный ряд превращается в числовой ряд

    Исследуем сходимость этого ряда по признаку Даламбера. Имеем

    Т.е. ряд сходится.

    При х = 3 получим ряд

    Который расходится, так как не выполняется необходимый признак сходимости ряда

    При х = -2 получим

    Это знакочередующийся ряд, который, согласно признаку Лейбница, сходится.

    Итак, в точках x = 1 и х = -2. ряд сходится, а в точке x = 3 расходится.

    Разложение элементарных функций в ряд Маклорена:

    Рядом Тейлора для функции f(x) называется степенной ряд вида

    Если, а = 0, то получим частный случай ряда Тейлора

    который называется рядом Маклорена.

    Степенной ряд внутри его промежутка сходимости можно почленно дифференцировать и интегрировать сколько угодно раз, причем полученные ряды имеют тот же промежуток сходимости, что исходный ряд.

    Два степенных ряда можно почленно складывать и умножать по правилам сложения и умножения многочленов. При этом промежуток сходимости полученного нового ряда совпадают с общей частью промежутков сходимости исходных рядов.

    Для разложения функции в ряд Маклорена необходимо:

    1) вычислить значения функции и ее последовательных производных в точке x = 0, т.е. , , .

    8. Разложить в ряд Маклорена функции.

    Какова сумма всех натуральных чисел? Интуиция подсказывает, что ответ - бесконечность. В математическом анализе сумма натуральных чисел является простым примером расходящегося ряда. Тем не менее, математики и физики сочли полезным придать дробные, отрицательные и даже нулевые значения суммам таких рядов. Цель моей статьи - желание отодвинуть завесу тайны, окружающую результаты суммирования расходящихся рядов. В частности, я буду использовать функцию Sum (функция поиска частичных сумм, рядов и т. п. в Mathematica ), а так же другие функции в Wolfram Language для того, чтобы объяснить в каком смысле стоит рассматривать следующие утверждения:

    Важность обозначений формул буквами A, B, C, и D вскоре станет вам понятна.

    Начнем с того, что напомним понятие сходящегося ряда, используя следующую бесконечно убывающую геометрическую прогрессию.

    Общий член ряда, начиная с n = 0 , определяется по формуле:

    Теперь зададим сумму членов ряда от i = 0 до некоторого конечного значения i = n .

    Эта конечная сумма называется частичной суммой ряда .

    График значений таких частичных сумм показывает, что их значения приближаются к числу 2 с ростом n :

    Применяя функцию Limit (поиск предела последовательности или функции в точке) найдем предел значения частичных сумм этого ряда при стремлении n к бесконечности, что подтвердит наши наблюдения.

    Функция Sum даёт такой же результат, когда мы производим суммирование членов ряда в пределах от 0 до бесконечности.

    Мы говорим, что данный ряд (сумма данной бесконечно убывающей геометрической прогрессии) сходится и что его сумма равна 2.

    Вообще, бесконечный ряд сходится, если последовательность его частичных сумм стремится к некоторому значению при неограниченном увеличении номера частичной суммы. В этом случае, предельное значение частичных сумм называется суммой ряда.

    Бесконечный ряд который не сходится называется расходящимся . По определению, сумма расходящегося ряда не может быть найдена с помощью рассмотренного выше метода частичных сумм. Тем не менее, математики разработали различные способы присваивания конечных числовых значений суммам этих рядов. Такая сумма называется регуляризованной суммой расходящегося ряда. Процесс вычисления регуляризованных сумм называется регуляризацией .

    Теперь мы рассмотрим пример A из вступления.

    “A” обозначает Абеля, знаменитого норвежского математика, который предложил одну из техник регуляризации расходящихся рядов. В ходе своей короткой жизни, он умер всего в 26 лет, Абель достиг впечатляющих результатов в решении одних из самых трудных математических задач. В частности, он показал, что решение алгебраического уравнения пятой степени не может быть найдено в радикалах, поставив тем самым точку в проблеме, которая оставалась нерешенной на протяжении 250 лет до него.

    Для того чтобы применить метод Абеля, заметим, что общий член данного ряда имеет вид:

    Это можно легко проверить, найдя несколько первых значений a [n ].

    Как можно увидеть на графике ниже, частичные суммы ряда принимают значения, равные 1 или 0 в зависимости от того, четное n или нечетное.

    Естественно, что функция Sum выдает сообщение, о том что ряд расходится.

    Регуляризация Абеля может быть применена к этому ряду в два шага. Сначала мы строим соответствующий степенной ряд.

    Затем мы берем предел этой суммы при x стремящемся к 1, заметим при этом, что соответствующий ряд сходится для значений x меньших, но не равных 1.

    Эти два шага можно объединить, сформировав, по сути, определение суммы расходящегося ряда по Абелю .

    Мы можем получить тот же ответ используя опцию Regularization для функции Sum следующим образом.

    Значение 1 / 2 представляется разумным, так как оно является средней величиной из двух значений, 1 и 0, принимаемых частичной суммой данного ряда. Кроме того, используемый в данном методе предельный переход интуитивно понятен, т. к. при x = 1 степенной ряд совпадает с нашим расходящимся рядом. Однако, Абель был сильно обеспокоен отсутствием строгости, которое было присуще математическому анализу того времени, и выражал свою обеспокоенность об этом:

    «Расходящиеся ряды - изобретение дьявола, и это стыдно на них ссылаться при каких бы то ни было доказательствах. С их помощью, можно сделать любой вывод, какой ему будет угоден, и именно поэтому эти ряды производят столько ошибок и столько парадоксов.» (Н. Х. Абель в письме к своему бывшему учителю Берндту Хольмбою, Январь 1826)

    Обратимся теперь к примеру B, в котором утверждается, что:

    “B” обозначает Бореля, французского математика, который работал в таких областях как теория меры и теория вероятностей. В частности, Борель связан с так называемой “теоремой о бесконечных обезьянах”, которая утверждает, что если абстрактная обезьяна будет случайным образом ударять по клавиатуре пишущей машинки на протяжении бесконечного количества времени, то вероятность того, что она напечатает некоторый конкретный текст, например, полное собрание сочинений Уильяма Шекспира, отлична от нуля.

    Для того чтобы применить метод Бореля заметим, что общий член данного ряда имеет вид:

    Регуляризация Бореля может быть применена к быстро расходящимся рядам в два шага. На первом шаге мы вычисляем экспоненциальную производящую функцию для последовательности членов данного ряда. Стоящий в знаменателе факториал обеспечивает сходимость данного ряд при всех значениях параметра t .

    Затем мы производим преобразование Лапласа нашей экспоненциальной производящей функции и ищем его значение в точке s = 1 .

    Эти шаги можно объединить, в итоге мы получим, по сути, определение суммы расходящегося ряда по Борелю .

    Также мы можем использовать специализированные функции Wolfram Language для поиска экспоненциальной производящей функции и преобразования Лапласа:

    При этом, ответ можно получить непосредственно с помощью Sum следующим образом.

    Определение суммы по Борелю разумно, т. к. оно даёт тот же самый результат, что и обычный метод частичных сумм, если его применить к сходящемуся ряду. В этом случае можно поменять местами суммирование и интегрирование, и затем определить Гамма-функцию , при этом мы получим, что соответствующий интеграл будет равен 1 и останется просто, по сути, исходная сумма ряда:

    Однако в случае с расходящимися рядами поменять местами знаки суммы и интеграла нельзя, что приводит к интересным результатам, которые даёт данный метод регуляризации.

    Суммирование по Борелю представляет собой универсальный метод суммирования расходящихся рядов, который применяется, скажем, в квантовой теории поля. О применении суммирования по Борелю существует огромная коллекция литературы.

    Пример C утверждает что:

    “C” обозначает Чезаро (на англ. языке его фамилия пишется как Cesaro), итальянского математика, который внес значительный вклад в дифференциальную геометрию, теорию чисел и математическую физику. Чезаро был очень продуктивным математиком и написал около 80 работ в период с 1884 по 1886 г., до того, как получил степень PhD в 1887!

    Для начала заметим, что общий член ряда, начиная с n = 0, имеет вид:

    График показывает сильную осцилляцию частичных сумм данного ряда.

    Метод Чезаро использует последовательность средних арифметических значений частичных сумм ряда для того, чтобы подавить осцилляции, что демонстрирует следующий график.

    Формально говоря, суммирование по Чезаро определяется как предел последовательности средних арифметических значений частичных сумм ряда. Вычисляя данный предел для ряда из примера C, мы получим ожидаемый нами результат -1/2 (см. график выше).

    Сумма по Чезаро может быть получена непосредственно, если мы в функции Sum используем данный тип регуляризации, указав соответствующее значение опции Regularization.

    Метод суммирования по Чезаро играет важную роль в теории рядов Фурье , в которых ряды на основе тригонометрических функций используются для представления периодических функций. Ряд Фурье для непрерывной функции может и не сходится, но соответствующая сумма по Чезаро (или чезаровское среднее, как её обычно называют) всегда будет сходиться к функции. Этот красивый результат называется теоремой Фейера.

    Наш последний пример утверждает, что сумма натурального ряда равна -1/12.

    “D” означает Дирихле, немецкого математика, который совершил огромный вклад в теорию чисел и ряд других областей математики. О широте вкладов Дирихле можно судить, просто введя в Mathematica 10 следующий код.

    Out//TableForm=

    Регуляризация по Дирихле получила свое название от понятия “ряд Дирихле”, который определяется следующим образом:

    Специальным случаем данного ряда является дзета-функция Римана , которую можно определить так:

    Функция SumConvergence говорит нам, что этот ряд сходится в том случае, если действительная часть параметра s будет больше 1.

    Однако, сама по себе дзета-функция Римана может быть определена и для других значений параметра s с помощью процесса аналитического продолжения, известного из теории функций комплексного переменного. Например, при s = -1, мы получим:

    Но при s = -1, ряд, задающий дзета-функцию Римана и есть натуральный ряд. Отсюда мы и получаем, что:

    Еще один способ осознания этого результата заключается в том, чтобы ввести бесконечно малый параметр ε в выражение члена нашего расходящегося ряда, а затем найти разложение полученной функции в ряд Маклорена с помощью функции Series , как показано ниже.

    Первое слагаемое в разложении выше стремится к бесконечности при приближении параметра ε к нулю, в то же время третий член и все следующие члены стремятся к нулю. Если отбросить все члены, зависящие от ε, то оставшееся число -1/12 как раз и будет суммой по Дирихле натурального ряда. Таким образом, сумма по Дирихле получается путем отбрасывания бесконечно малых и бесконечно больших членов разложения ряда, построенного описанным нами способом. Это находится в противоречии с тем, что принято отбрасывать лишь бесконечно малые величины в обычном математическом анализе, поэтому результат суммирования расходящихся рядов по Дирихле не столь интуитивно понятен.
    Стивен Хокинг применил данный метод к задаче вычисления Фейнмановых интегралов в искривленном пространстве-времени. Статья Хокинга описывает процесс дзета-регуляризации очень системно и она приобрела большую популярность после публикации.

    Наши знания о расходящихся рядах основаны на глубочайших теориях, разработанных одними из лучших мыслителей последних нескольких столетий. Тем не менее, я соглашусь со многими читателям, которые как и я, чувствуют некоторое непонимание, когда они видят их в современных физических теориях. Великий Абель, вероятно, был прав, когда назвал данные ряды “изобретением дьявола”. Не исключено, что какой-то будущий Эйнштейн, обладающий умом, свободным от всяческих устоев и авторитетов, отбросит преобладающие научные убеждения и переформулирует фундаментальную физику так, что в ней не не будет места для расходящихся рядов. Но даже если такая теория станет реальностью, расходящиеся ряды все равно будут давать нам богатый источник математических идей, освещая дорогу к более глубокому пониманию нашей Вселенной.

    Добавить метки
    Похожие публикации