Тип гибридизации электронных орбиталей атомов углерода длина. Пример определения типа связи










Примеры. Определите тип химической связи между атомами в молекулах веществ: гидроксида натрия, серной кислоты, гидроксида мышьяка, сульфата натрия. Покажите стрелкой к какому элементу смещена электронная пара Какая связь более полярна? Каковы степени окисления атомов элементов?


Алгоритм выполнения 1.Изобразить графическую формулу. 2. Под каждым элементом проставить значение электроотрицательности из таблицы. 3. Стрелкой показать смещение электронной плотности. 4. Рассчитать разность относительных электроотрицательностей и указать тип связи (ионная, КП, КНП) 5. По направлению и количеству смещений электронной плотности определить степени окисления атомов элементов.


Пример выполнения NaOH Na OH 0,93 3,5 2, ОЭО(O-Na) ОЭО(O-Na)= 3,5 – 0,93=2,63 ОЭО(О-Н)= 3,5-2,1=1,4 ионная КП


Продолжение H 2 SO 4 S O O O O H H ОЭО(О-Н)=3,5-2.1=1.4 КП ОЭО(O-S)=3,5-2,6=0,9 КП






Определить тип гибридизации центрального атома в молекулах 1. СН 4 метана 2. NH 3 аммиака 3. Н 2 О Пример С НН Н Н Центральный атом – углерод. В(С)=4 3. …2s 2 2p s 1 2p 3


5. В формировании структуры молекулы участвуют одна s и три p- электронные орбитали. Все связи в молекуле метана одинарные -связи. Тип гибридизации sp 3. Все электронные облака участвующие в гибридизации одинаковы. Следовательно углы между ними одинаковы и =0. Молекула неполярна. Геометрическая форма тетраэдр. Ответ sp 3 -гибридизация =0, неполярная молекула


Молекула аммиака Рассуждая аналогично для молекулы аммиака: 1 N H H H 2. B(N)=3, …2s 2 2p 3: связи+электронная пара. 5. SР 3 - гибридизация. Электронные облака разного характера. Углы между ними неодинаковы. 0. Молекула полярна.


Молекула воды 2. Кислород В=2. :O: H H s 2 2p 4 4. В молекуле 2 -связи и две электроные пары. В формировании структуры молекулы участвуют s- и три p-электронные орбитали. Тип гибридизации sp 3. 0 (т.к. Углы между электронными облаками различны). Молекула полярна.


Взаимодействия между молекулами. Водородная связь Водородная связь – это особый вид взаимодействия между молекулами веществ. Водородная связь возникает между атомом водорода и другим более электроотрицательным атомом за счет сил электростатического притяжения по донорно-акцепторному механизму.


Вандерваальсово взаимодействие (межмолекулярное взаимодействие) 1873 год голландский ученый И. Ван-дер-Ваальс, предположил, что существуют силы, обусловливвающие притяжение между молекулами. Типы взаимодействия: 1) диполь-дипольное (ориентационное) Взаимодействие полярных молекул. 2) Индукционное. Взаимодействие полярных и неполярных молекул. Энергия этого вида взаимодействия слабее, чем ориентационного. 3)Дисперсионное. В неполярных молекулах (инертные газы) возникают флуктуации электронной плотности, в результате возникают мгновенные диполи, которые могут индуцировать соседние молекулы.



Гибридизация атомных орбиталей и геометрия молекул

Важной характеристикой молекулы, состоящей более чем из двух атомов, является ее геометрическая конфигурация. Она определяется взаимным расположением атомных орбиталей, участвующих в образовании химических связей.

Перекрывание электронных облаков возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам.

Таблица 1 Гибридизация орбиталей и пространственная конфигурация молекул

Возбужденный атом бериллия имеет конфигурацию 2s 1 2p 1 , возбужденный атом бора - 2s 1 2p 2 и возбужденный атом углерода - 2s 1 2p 3 . Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. Например, в таких соединениях как BeCl 2 , BeCl 3 ,CCl 4 должны быть неравноценные по прочности и направлению связи, причем σ-связи из p-орбиталей должны быть более прочными, чем связи из s-орбиталей, т.к. для p-орбиталей имеются более благоприятные условия для перекрывания. Однако опыт показывает, что в молекулах, содержащих центральные атомы с различными валентными орбиталями (s, p, d), все связи равноценны. Объяснение этому дали Слейтер и Полинг. Они пришли к выводу, что различные орбитали, не сильно отличающиеся по энергиям, образуют соответствующее число гибридных орбиталей. Гибридные (смешанные) орбитали образуются из различных атомных орбиталей. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации. Гибридные орбитали одинаковы по форме электронного облака и по энергии. По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обусловливают лучшее перекрывание электронных облаков.

Гибридизация атомных орбиталей требует затрат энергии, поэтому гибридные орбитали в изолированном атоме неустойчивы и стремятся превратиться в чистые АО. При образовании химических связей гибридные орбитали стабилизируются. Вследствие более прочных связей, образованных гибридными орбиталями, из системы выделяется больше энергии, и поэтому система становится более стабильной.

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.



Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

Гибридизация АО - это выравнивание валентных АО по форме и энергии в процессе образования химической связи .

1. В гибридизации могут участвовать только те АО, энергия которых достаточно близка (например, 2s- и 2р-атомные орбитали).

2. В гибридизации могут участвовать вакантные (свободные) АО, орбитали с неспаренными электронами и неподеленными электронными парами.

3. В результате гибридизации появляются новые гибридные орбитали, которые ориентируются в пространстве таким образом, чтобы после их перекрывания с орбиталями других атомов электронные пары оказались максимально удаленными друг от друга. Такое состояние молекулы отвечает минимуму энергии в силу максимального отталкивания одноименно заряженных электронов.

4. Вид гибридизации (число АО, подвергающихся гибридизации), определяется числом "атакующих" данный атом атомов и числом неподеленных электронных пар в данном атоме .

Пример. ВF 3 . В момент образования связи происходит перестройка АО атома В, переходящего в возбужденное состояние: В 1s 2 2s 2 2p 1 ® B* 1s 2 2s 1 2p 2 .


Гибридные АО располагаются под углом 120 о. Молекула имеет форму правильного треугольника (плоская, треугольная):

3. sp 3 -гибридизация. Такой вид гибридизации характерен для атомов 4-ой группы (например, углерода, кремния, германия ) в молекулах типа ЭХ 4 , а также для атома С в алмазе, молекулах алканов, для атома N в молекуле NH 3 , NH 4 + , атома О в молекуле Н 2 О и т.д.

Пример 1. СН 4 . В момент образования связи происходит перестройка АО атома С, переходящего в возбужденное состояние: С 1s 2 2s 2 2p 2 ® С* 1s 2 2s 1 2p 3 .

Гибридные АО располагаются под углом 109 о 28".

Пример 2. NН 3 и NН 4 + .

Электронная структура атома N: 1s 2 2s 2 2p 3 . Гибридизации подвергаются 3 АО, содержащие неспаренные электроны, и 1 АО, содержащая неподеленную электронную пару. В силу более сильного отталкивания неподеленной электронной пары от электронных пар s-связей угол связи в молекуле аммиака составляет 107,3 о (ближе к тетраэдрическому, а не к прямому).

Молекула имеет форму тригональной пирамиды :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона аммония и равноценность связей в нем.

Пример 3. Н 2 О.

Электронная структура атома О 1s 2 2s 2 2p 4 . Гибридизации подвергаются 2 АО, содержащие неспаренные электроны, и 2 АО, содержащие неподеленные электронные пары. Угол связи в молекуле воды составляет 104,5 о (также ближе к тетраэдрическому, а не к прямому).

Молекула имеет угловую форму :

Представления об sp 3 -гибридизации позволяют объяснить возможность образования иона оксония (гидроксония) и образование каждой молекулой 4-х водородных связей в структуре льда.

4. sp 3 d-гибридизация. Такой вид гибридизации характерен для атомов элементов 5-ой группы (начиная с Р) в молекулах типа ЭХ 5 .

Пример. РСl 5 . Электронная структура атома Р в основном и возбужденном состояниях: Р 1s 2 2s 2 2p 6 3s 2 3p 3 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 . Форма молекулы - гексаэдр (точнее - тригональная бипирамида) :

5. sp 3 d 2 -гибридизация. Такой вид гибридизации характерен для атомов элементов 6-ой группы (начиная с S) в молекулах типа ЭХ 6 .

Пример. SF 6 . Электронная структура атома S в основном и возбужденном состояниях: S 1s 2 2s 2 2p 6 3s 2 3p 4 ® P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 .

Форма молекулы - октаэдр :

6. sp 3 d 3 -гибридизация. Такой вид гибридизации характерен для атомов элементов 7 группы (начиная с Cl) в молекулах типа ЭХ 7 .

Пример. IF 7 . Электронная структура атома F в основном и возбужденном состояниях: I 5s 2 3p 5 ® I* 5s 1 3p 3 3d 3 . Форма молекулы - декаэдр (точнее - пентагональная бипирамида) :

7. sp 3 d 4 -гибридизация. Такой вид гибридизации характерен для атомов элементов 8 группы (кроме Не и Ne) в молекулах типа ЭХ 8 .

Пример. ХеF 8 . Электронная структура атома Хе в основном и возбужденном состояниях: Хе 5s 2 3p 6 ® Хе* 5s 1 3p 3 3d 4 .

Форма молекулы - додекаэдр :

Могут быть и другие виды гибридизации АО.

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .

Инструкция

Рассмотрите молекулу простейшего предельного углеводорода метана. Его выглядит следующим образом: CH4. Пространственная модель молекулы представляет собою тетраэдр. Атом углерода образует с четырьмя атомами водорода совершенно одинаковые по длине и энергии связи. В них, согласно вышеприведенному примеру, участвуют 3 – Р электрона и 1 S – электрон, орбиталь которого стала в точности соответствовать орбиталям трех других электронов в результате произошедшей . Такой тип гибридизации называется sp^3 гибридизацией. Она присуща всем предельным .

А вот простейший представитель непредельных – этилен. Его формула выглядит следующим образом: С2Н4. Какой тип гибридизации присущ углероду в молекуле этого вещества? В результате ее образуются три орбитали в виде несимметричных «восьмерок», лежащих в одной плоскости под углом 120^0 друг к другу. Их образовали 1 – S и 2 – Р электрона. Последний 3-й Р – электрон не видоизменил свою орбиталь, то есть она осталась в виде правильной «восьмерки». Такой тип гибридизации называют sp^2 гибридизацией.

Как же образуются связи в молекуле ? Две гибридизованные орбитали каждого атома вступили во с двумя атомами водорода. Третья гибридизованная орбиталь образовала связь с такой же орбиталью другого . А оставшиеся Р – орбитали? Они «притянулись» друг к другу по обе стороны от плоскости молекулы. Между атомами углерода образовалась связь. Именно атомам с «двойной» связью присуща sp^2 .

А что происходит в молекуле ацетилена или ? Его формула выглядит следующим образом: С2Н2. В каждом атоме углерода гибридизации подвергаются только два электрона: 1 --S и 1 – Р. Остальные два сохранили орбитали в виде «правильных восьмерок», перекрывающихся» в плоскости молекулы и по обе стороны от нее. Вот поэтому такой тип гибридизации носит название sp – гибридизации. Она присуща атомам с тройной связью.

Все слова , существующие в том или ином языке, можно разделить на несколько групп. Это важно при определении как значения, так и грамматических функций слова . Отнеся его к определенному типу , вы можете видоизменять его в соответствии с правилами, даже если оно вам раньше не встречалось. Типами элементов слова рного состава языка занимается лексикология.

Вам понадобится

  • - текст;
  • - словарь.

Инструкция

Выберите слово, тип которого вы хотите определить. Принадлежность его к той или иной части речи пока не играет роли, как и форма, и функция его в предложении. Это может быть абсолютно любое слово. Если оно не указано в задании, выпишите первое попавшееся. Определите, называет ли оно предмет, качество, действие или нет. По этому параметру все слова делятся на знаменательные, местоименные, числительные, служебные и междометные. К первому типу относятся существительные, прилагательные, глаголы и . Именно они обозначают названия предметов, качеств и действий. Второй тип слов, у которых есть функция называния - местоименный. Способность называть отсутствует у , междометного и служебного типов. Это сравнительно небольшие группы слов, но они есть в каждом .

Определите, способно ли заданное слово выражать понятие. Эта функция есть у слова рных единиц знаменательного типа, ведь именно они и формируют понятийный ряд любого языка. Однако любое число тоже относится к разряду понятий, а соответственно, тоже несет в себе эту функцию. Есть она и у служебных слов, а вот у местоимений и междометий - отсутствует.

Рассмотрите, как будет слово, если оно окажется в предложении. Может ли оно являться ? Им может быть любое слово знаменательного типа. Но эта возможность есть и у , а также у числительного. А вот служебные слова играют вспомогательную роль, ни подлежащим, ни , ни второстепенными членами предложения они быть не могут, как и междометия.

Для удобства можно составить табличку из четырех столбцов шести строк. В верхней строке назовите соответствующие столбцы «Типы слов», «Называние», «Понятие» и «Способно ли быть членом предложения». В первом левом столбце запишите названия типов слов, их всего пять. Определите, какими функциями обладает заданное слово, а каких у него нет. В соответствующих графа поставьте плюсы и . Если во всех трех графах стоят плюсы, то это знаменательный тип. У местоименного плюсы будут стоять в первом и третьем столбцах, - во второй и в третьей. Служебные слова могут только выражать понятие, то есть имеют один плюс во второй графе. Напротив междометий во всех трех столбцах будут стоять минусы.

Видео по теме

Гибридизацией называется процесс получения гибридов – растений или животных, произошедших от скрещения разных сортов и пород. Слово гибрид (hibrida) с латинского языка переводится как «помесь».

Гибридизация: естественная и искусственная

Процесс гибридизации основан на объединении в одной клетке генетического материала разных клеток от разных особей. Различается внутривидовая и отдаленная, при которой происходит соединение разных геномов. В природе естественная гибридизация происходила и происходит без участия человека постоянно. Именно скрещиваясь внутри вида, изменялись и улучшались растения и появлялись новые сорта и породы животных. С точки зрения происходит гибридизация ДНК, нуклеиновых кислот, изменения на атомном и внутриатомном уровнях.

В академической химии под гибридизацией понимается специфическое взаимодействие в молекулах вещества атомных орбиталей. Но это не реальный физический процесс, а лишь гипотетическая модель, концепция.

Гибриды в растениеводстве

В 1694 году немецкий ученый Р. Камерариус предложил искусственно получать . А в 1717 году английский Т. Фэрчайдл впервые скрестил разные виды гвоздик. Сегодня внутривидовая гибридизация растений производится с целью получения высокоурожайных или приспособленных, например, морозостойких сортов. Гибридизация форм и сортов является одним из методов селекции растений. Таким образом создано огромное количество современных сортов сельхозкультур.

При отдаленной гибридизации, когда скрещиваются представители разных видов и происходит объединение разных геномов, полученные гибриды в большинстве случаев не дают потомство или производят помеси низкого качества. Именно поэтому нет смысла оставлять семена созревших на грядке огурцов-гибридов, а всякий раз покупать их семена в специализированном магазине.

Селекция в животноводстве

В мире естественная гибридизация, как внутривидовая, так и отдаленная, также имеет место. Мулы были известны человеку еще за две тысячи лет до нашей эры. И в настоящее время мул и лошак используется в домашнем хозяйстве как относительно дешевое рабочее животное. Правда, такая гибридизация является межвидовой, поэтому самцы-гибриды рождаются обязательно стерильными. Самки же очень редко могут дать потомство.

Мул – это гибрид кобылицы и осла. Гибрид, полученный от скрещивания жеребца и ослицы, называется лошак. Специально разводятся мулы. Они выше и сильнее лошака.

А вот скрещивание домашней собаки с волком было очень распространенным занятием у охотников. Затем, полученное потомство подвергалось дальнейшей селекции, в результате создавались новые породы собак. Сегодня селекция животных – важная составляющая успешности отрасли животноводства. Гибридизация проводится целенаправленно, с ориентацией на заданные параметры.

Похожие публикации