Аварии с выбросом радиации. Радиационная авария

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Чтобы человек жил полноценной жизнью и имел блага современности, требуется энергия. Во многом за ее выработку отвечают крупные станции, используя различные источники. Однако подобные установки несут не только благо, но и существенный вред для цивилизации и здоровья населения. Речь идет о таких проблемах, как аварии с выбросом радиоактивных веществ.

За время своего существования АЭС, представляющих собой опасные объекты, катастрофы наблюдались в Канаде, США, России, Украине, Японии и некоторых других стран. Некоторые ошибочно считают, что радиоактивность связана исключительно с возведением АЭС или созданием ядерного оружия. Излучение и радиоактивность существовали с момента образования планеты, когда на ней только начинала зарождаться жизнь.

Открытие радиации в качестве явления совершил физик А. Беккерель из Франции более века назад во время изучения урана. В настоящее время она применяется повсеместно, включая развитие ядерной энергетики. Радиоактивные вещества могут стать источником огромных возможностей, а могут стать причиной катастроф – примеров в истории немало.

Понятие и особенности радиационной катастрофы

Само понятие катастрофы в сфере радиации предполагает под собой аварию на важном предприятии с радиационной опасностью. Как результат, происходит выброс веществ радиации в природу, а также излучение в количествах, которые превышают допустимые нормы. К зонам риска относят такие объекты:

  • АЭС или атомные энергетические установки, а также электростанции.
  • Места, где проводились ядерные взрывы, имеющие обычно испытательный характер или важные в промышленной сфере.
  • Производства ядерно-топливного характера.
  • Зоны монтажа, нахождения и хранения ядерных боевых припасов.
  • Космические средства и разнообразные транспортные средства, на борту которых имеется радиоактивный груз.
  • Средства транспорта, которые имеют такое оснащение, как ядерная установка.

Радиационные аварии и их основная классификация

Чтобы понять опасность от возможных катастроф, необходимо знать разницу между различными радиационными авариями. Разновидности представлены исходя из объемов катастрофы. Можно выделить следующие варианты:

  1. Локальные катастрофы. Это аварии, которые нарушают работу предприятия или реактора, но уровень загрязнения при этом не превышает нормы.
  2. Местные аварии. Катастрофа касается самого объекта, а также охватывает санитарно-защитную зону. Выбросы превышают норму, которая была установлена для реактора.
  3. Общие катастрофы. Здесь проблема касается функционирования предприятия, загрязнение выходит за границы санитарно-защитной зоны, уровень выбросов выше нормального. Возможно не только загрязнение окружающих территорий, но также облучение населения.

Также катастрофы можно разделить по техническим последствиям. К ним относят такие аварии:

  1. Гипотетическая катастрофа. Ее последствия предугадать невозможно или очень сложно.
  2. Запроектная катастрофа. Это возможная авария, которая происходит внезапно, а ее возникновение не было прописано в техническом проекте.
  3. Проектная катастрофа. Эта авария была заложена в проекте установки, она предусмотренная, поэтому ее устранение быстрое и простое.
  4. Реальная авария. Это катастрофа, которая уже произошла.

Также все катастрофы могут происходить с разрушением ядерного реактора или без разрушения.

Причинные факторы и течение радиационных катастроф

Причин аварии выделяют множество. Для удобства их условно разделяют на три основные группы:

  1. Внешние факторы – поражения оружием, стихийные проблемы любого характера, диверсии и многое другое.
  2. Отказ функционирования оборудования. Это происходит из-за некачественной или неполной конструкции, неправильного монтажа, ошибок в использовании или первоначального неправильного создания.
  3. Ошибка в работе людей, нарушение установленных правил.

При этом аварии с выбросом и угрозой выброса радиоактивных веществ разделяют на четыре основных фазы в зависимости от их протекания.

  1. Начальная или первая фаза отличается быстротечностью. Здесь обычно нет выброса вредных компонентов. Зачастую обнаруживают возможность облучения людей, которые проживают рядом с санитарно-защищенной зоной опасного объекта.
  2. Вторая зона получила название ранняя. Время ее протекания занимает от нескольких минут до пары суток. Первоначально на протяжении пары часов происходит разовый выброс. Далее до окончания фазы происходит длительный выброс. Проблема охватывает и природу, и людей.
  3. Средняя фаза – третий этап катастрофы, занимающий от пары дней до одного года. Его особенностью становится отсутствие выброса веществ.
  4. Поздняя фаза – четвертый этап, именуемый восстановительным. Здесь люди могут вести жизнь, к которой привыкли, но полностью от загрязнения пока еще избавиться не удалось. Фаза может длиться, как пару дней, так и несколько веков. Конкретный период напрямую зависит от силы загрязнения и характера проблемы. Началом поздней фазы можно считать отсутствие нужды в использовании защитных мер.

Самые масштабные катастрофы в мировой истории

За время существования человечества произошло немало техногенных катастроф.

США

Одна из значительных случилась в 1944 году в США. Тогда в Ок-Риджской национальной лаборатории взорвалось устройство по обогащению урана. Наблюдался выброс гидрофтористой кислоты из-за чего пострадали 5 человек, получив ожоги, для двоих людей они оказались несовместимыми с жизнью.

В 1979 году катастрофа наблюдалась в США, считающаяся одной из самых крупных за всю историю радиации. 53% активной зоны реактора превратилось в расплавленный материал из-за ошибок в работе персонала. Помимо этого, в реку Сукуахана сбросили около 185 кубометров воды со слабой радиацией. Из области заражения пришлось эвакуировать свыше 200 тысяч человек.

Неправильная работа персонала на реакторе EBR в США — случилось саморазрушение реактора, было стерто с лица земли около 40% его активной зоны.

СССР

В СССР первая масштабная катастрофа была в 1948 году. 19 июня атомный реактор, специализирующийся на наработке плутония, начал работать на проектной мощности. Причиной катастрофы называют недостаток в охлаждении блоков материала, что привело к сплавлению урана и графита. Ликвидацией занимались 9 суток, от облучения пострадал мужской персонал предприятия и солдаты, помогавшие с ликвидационными работами.

Через год комбинат Маяк создал еще одну аварийную ситуацию – массовый выброс радиоактивных веществ в реку Течу. В результате этого 124 тысячи населения пострадали от облучения. Около 28 тысяч человек были облучены очень сильно, так как проживали ближе других к реактору по течению реки.

1957 год связан с «Кыштымской» катастрофой. В ПО «Маяк», который находится в Челябинской области, произошел взрыв емкости с компонентами радиации. Его мощность составила 70-100 тонн, если говорить о тротиловом эквиваленте. Выбросы оставили после себя Восточно-Уральский радиоактивный след, площадь которого составила более 20 тысяч км². Облучению в среднем до 100 Рентген были подвержены свыше 5 тысяч человек, а ликвидировать последствия пришлось 25-30 тысячам военных.

В 1967 году на ПО «Маяк» вновь случилась катастрофа. Ввиду того, что обмелело озеро Карачай, куда сбрасывались отходы, радиоактивную пыль вынесло на местность вокруг реактора. В среднем было поражено свыше 40 тысяч человек, проживающих на 800 км².

1970 год стал фатальным для «Красное Сормово», который находится в Нижнем Новгороде. В процессе возведения атомной подводной лодки случайно был выполнен непредполагаемый запуск реактора. Как результат, была заражена зона цеха, пострадала 1000 человек экипажа, 3 умерли от лучевой болезни.

Канада

В 1952 году в Канаде на атомной станции произошла авария огромных масштабов. Причиной назвали неправильную работу сотрудников – активная зона нагрелась и начала расплавляться. В землю, воду было выброшено свыше 3800 м³ продуктов радиации. В 1955 году причиной трагедии также стал «человеческий фактор».

Украина

В 1986 году произошла катастрофа, которая осталась в памяти жителей Украины и соседних стран. Авария случилась на Чернобыльской АЭС. Произошло частичное расплавление активной зоны реактора. Заражение коснулось областей Украины, Беларуси, а также отголоски наблюдались и в России, охватив 19 регионов, население которых превышало 2,6 миллиона человек. Пришлось эвакуировать город Припять, который приобрел славу города смерти.

Япония

В 1999 году в Токаймуре в Японии случилась трагедия, приведшая к цепной реакции катастрофических событий. Причиной назвали человеческий фактор. Катастрофа была абсолютно неуправляемой и длилась 17 часов. Следствием стало облучение 439 человек, смерть двоих людей.

2004 год также стал трагичным, авария произошла на АЭС «Михама» возле Токио. В реакторной турбине были утечки материалов, в частности пара, персонал получил серьезные ожоги.

Также масштабная авария наблюдалась и в Великобритании из-за эксплуатационной ошибки. Пожар на реакторе продолжался 4 часа, загрязнение коснулось Ирландии и Англии, а радиационное облако приблизилось к границам Норвегии, Германии, Бельгии и Дании.

В 1969 году в Швейцарии на подземном реакторе также случилась трагедия. Чтобы минимизировать нанесенный вред, пещеру, где находился реактор замуровали. В 1967 году на АЭС «Святой Лаврентий» во Франции произошел взрыв из-за этого, загрузка топливного канала была выполнена неправильно.

Каковы последствия радиационной катастрофы

Последствия проблемы могут быть значительными. Они могут коснуться загрязнения окружающей среды, включая атмосферу и гидросферу. Вещества попадают в продукты питания, приводя к инфицированию, отравлениям или развитию лучевой болезни у животных и людей. Радиационное воздействие на живых существ может носить внешний, внутренний или контактный характер.

Важно понять, что подготовиться к радиационным авариям невозможно. Катастрофа всегда происходит внезапно. Требуются оперативные действия профессионалов, чтобы предотвратить или минимизировать серьезный вред. Ядерные технологии – это бомба замедленного действия, которая способна, как обеспечить нескончаемым потоком энергии, так и уничтожить человечество в целом.

1) 03.03.1949. СССР.
В результате массового сброса комбинатом «Маяк» в реку Теча высокоактивных жидких радиоактивных отходов облучению подверглись около 124 тысяч человек в 41 населенном пункте . Наибольшую дозу облучения получили 28 100 человек, проживавших в прибрежных населенных пунктах по реке Теча. У части из них были зарегистрированы случаи хронической лучевой болезни.

2) 12.12.1952. Канада. АЭС Чолк-Ривер (штат Онтарио).
Техническая ошибка персонала АЭС Чолк-Ривер привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалёку от реки Оттавы.

3) 29.09.1957. СССР. Комбинат "Маяк" в Челябинской области.
Авария, получившая название «Кыштымская». В хранилище радиоактивных отходов ПО «Маяк» взорвалась ёмкость, содержавшая 20 миллионов кюри радиоактивности. Специалисты оценили мощность взрыва в 70-100 тонн в тротиловом эквиваленте. Радиоактивное облако от взрыва прошло над Челябинской, Свердловской и Тюменской областями , образовав так называемый Восточно-Уральский радиоактивный след площадью свыше 20 тысяч кв. км. По оценкам специалистов, в первые часы после взрыва, до эвакуации с промплощадки комбината, подверглись разовому облучению до 100 рентген более пяти тысяч человек . В ликвидации последствий аварии в период с 1957 по 1959 год участвовали от 25 тысяч до 30 тысяч военнослужащих. В советское время катастрофа была засекречена.

4) 10.10.1957. Великобритания. Реактор в Виндскейле.
Авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии .

5) Апрель 1967.СССР. Комбинат "Маяк" в Челябинской области.
Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

6) 28.03.1979. США. АЭС Тримайл-Айленд в штате Пенсильвания.
В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов – ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

7) 10.08.1985. СССР . АПЛ К-431 в бухте Чажма.
Авария произошла при перезагрузке ядерного топлива в реакторы. Из-за нарушений технологии проведения операции произошел взрыв с выбросом радиоактивного содержимого. В результате взрыва на АПЛ образовалась трещина в корпусе. 10 человек погибли на месте. В ликвидации аварии были задействованы более 2 тыс. человек, но в последствии пострадавшими от радиации признали только 239. Радиоактивному загрязнению подверглось около 30% территории завода, стоящие возле объекта корабли, пирсовая зона. Сформировался след радиоактивного заражения шириной 600-1500 м и длиной 6-8 км. След пролёг по лесистой местности в направлении Уссурийского залива.

8) 25.04.1986. СССР. Чернобыльская АЭС.
Крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России.Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

9) 11.03.2011. Япония . АЭС Фукусима-1. Последствия ещё только предстоит оценить. На сегодняшний день вторая по масштабности ядерная катастрофa после чернобыльской.

Заслуживает упоминания происшествие на заводе «Красное Сормово» (не вошел в список т.к. не было прямого выброса во внешнюю среду, но зараженные радиацией люди всё же покинули территорию завода).

5а) 18.01.1970. СССР . Завод «Красное Сормово» (Нижний Новгород).
При строительстве атомной подводной лодки К 320 произошёл неразрешённый запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно. В цехе находилось около 1000 рабочих . Радиоактивного заражения местности удалось избежать из-за закрытости цеха. В тот день многие ушли домой, не получив необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу, трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.
Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

Радиационной аварией считается потеря управления источником ионизирующего излучения, вызванная неисправностью, неправильными действиями персонала, повреждением оборудования, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей или радиоактивному загрязнению окружающей среды сверх установленных норм.

Радиационная авария - нарушение пределов безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при которых произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящий к облучению населения и загрязнению окружающей среды. Петров С.В., Макашев В.А. Опасные ситуации техногенного характера и защита от них: Учебное пособие. - М.: НЦ Энас, 2008, с.54

Радиационные аварии различной тяжести вероятны на предприятиях ядерной энергетики, в медицине, при научных исследованиях, в промышленной радиографии. Радиационная авария является источником чрезвычайной ситуации.

Радиационные аварии по масштабам делятся на 3 типа: Хван Т.А., Хван П.А. Безопасность жизнедеятельности: Учебное пособие. - Ростов н/Д: «Феникс», 2004, с.256

  • 1) локальная авария - это авария, радиационные последствия которой ограничиваются одним зданием;
  • 2) местная авария - радиационные последствия ограничиваются зданиями и территорией АЭС;
  • 3) общая авария - радиационные последствия которой распространяются за территорию АЭС.

Для выявления степени опасности и масштабов последствий радиационных аварий, а также выработки научно обоснованных подходов к уменьшению ущерба и ликвидации их последствий, радиационные аварии классифицируют по нескольким признакам: например, по масштабам, по месту возникновения, по техническим причинам и др.

По техническим причинам возникновения аварии подразделяются на проектные и запроектные.

Проектной называется такая авария, исходное событие или причина которой предусматривается действующей нормативно-технической документацией, а обеспечение радиационной безопасности при этом предусмотрено проектом.

Запроектной называют аварию, развитие которой отклоняется от протекания возможных проектных аварий и обеспечение безопасности при этом не предусмотрено проектом. Такие аварии связаны главным образом с расплавлением активной зоны реактора АЭС. Их локализация осуществляется проведением различных организационных и инженерно-технических мероприятий, не связанных с системами безопасности АЭС.

С 1990 г. для классификации радиационных аварий в России адаптирована Международная шкала INES, разработанная Международным агентством по использованию атомной энергии (МАГАТЭ), которая приведена в табл.1.

Таблица 1 Классификации радиационных аварий (шкала INES)

Серьезное происшествие

Выброс в окружающую среду продуктов деления выше допустимого выброса без нарушений пределов безопасной эксплуатации. Доза облучения персонала до 50 мЗв, защиты населения не требуется

Максимальная проектная авария

Выброс радиоактивных веществ (РВ) в окружающую среду, не превышающий дозовых пределов для проектной аварии. Превышение дозовых пределов внутри АЭС Возможны поражения персонала до 1 Зв Необходимы противоаварийные мероприятия и защита персонала АЭС. Защиты населения не требуется

Авария с риском для окружающей среды

Выброс в окружающую среду РВ, приведший к незначительному превышению дозовых пределов для проектной аварии. Возможно частичное поражение населения и воздействие на окружающую среду. Необходимы частичные противоаварийные мероприятия по защите персонала АЭС и населения

Тяжелая авария

Выброс в окружающую среду значительной части продуктов деления, приведший к превышению дозовых пределов для проектных аварий. Возможны поражения населения и воздействие на окружающую среду. Необходимы противоаварийные мероприятия и частичная эвакуация

Глобальная авария

Выброс в окружающую среду большей части продуктов деления активной зоны, приведший к превышению дозовых пределов для проектной аварий. Возможны острые лучевые поражения населения, длительное воздействие на окружающую среду. Необходимо проведение различных мер по защите населения, в том числе эвакуацию и отселение

В самом конце 18 века было открыто радиоактивное излучение, после чего началось активное исследование этого явления. Уже в 1901 году впервые применили облучение в медицинских целях. Спустя 30 лет стали задумываться о разработке ядерного оружия. Первые заводы по производству плутония заработали в 1944 году. Отработанный материал поначалу просто сбрасывали в окружающую среду, как обычный мусор. Прилегающей местности был нанесен значительный урон. Так зародилась статистика радиационных аварий в мире. Началась эра радиоактивного загрязнения окружающей среды человеком.

Мирный «атом»

С середины 20 века начались разработки двигателя, для применения его в транспортной отрасли. По мере развития этого направления пробовали разрабатывать атомолет, атомовоз, атомоход. Самой удачной оказалась идея создать суда на атомном ходу. В гражданской сфере это атомные ледоколы, .

В медицине радиация стала служить во благо почти сразу после открытия. Сегодня радиоактивное излучение эффективно используется в области неврологии, онкологии, кардиологии, а также комплексной диагностики.

Статистика радиационных аварий в мире в сфере народного хозяйства:


Годы

Тип выброса, условное * кол-во

Неорганизованный сброс ядерных отходов Аварии на производстве и другие утечки Гражданские инциденты
1944–1949 2 4
1950–1959 1 15
1960–1969 1 11
1970–1979 1 10
1980–1989 1 28 1
1990–1999 2 31 15
2000–2009 2 10 9

* – в таблице приведены условные количественные значения. Так, к примеру, только на предприятии «Маяк» (Челябинская обл., Россия) за все время работы известно порядка 32 происшествий разной степени тяжести, а в сводную статистику попали лишь 15 из них.

Из таблицы можно заметить, что с 90 годов начали происходить инциденты среди граждан. Участились случаи кражи ядерных материалов, попытки их сбыта (виновники в большинстве случаев вскоре от полученного облучения). В частности, наблюдалось хищение медицинских радиоактивных источников, которые разбирали и продавали в качестве металлолома. Вообще, на предприятия по переплавке металлолома не раз попадал различный «зараженный» радиацией материал.

Ядерные катастрофы


После открытия цепной реакции распада в 1941 году задумались о применении ядерного ресурса для выработки электроэнергии. В 1954 году была завершена первая в мире АЭС (г. Обнинск, СССР). В наше время на планете насчитывается около 200 электростанций. Однако обеспечить безаварийную работу таких объектов удается с трудом.

Для оценки степени опасности данных статистики радиационных аварий в мире в 1990 году была разработана INES (ИНЕС) – международная классификация ядерных событий в гражданской сфере. Согласно этой шкале крупными радиационными авариями в мире считаются происшествия, оцененные выше 4 баллов. За всю историю ядерной энергетики насчитывается около 20 таких случаев.

INES 4. События, приводящие к выбросу в окружающую среду незначительных доз радиации, эквивалентных 10–100 ТБк 131 I. В таких авариях фиксируются единичные смертельные случаи от облучения. В зоне происшествий требуется только контроль продуктов питания. Примеры аварий:

  1. Флерюс, Бельгия (2006).
  2. Токаймура, Япония (1999).
  3. Северск, Россия (1993).
  4. Сен-Лоран, Франция (1980 и 1969).
  5. Богунице, Чехословакия (1977).

INES 5. Происшествия, в результате которых выброс радиации эквивалентен 100–1000 ТБк 131 I и служит причиной нескольких смертей. В таких зонах может потребоваться локальная эвакуация. Примеры:

  1. Гояния, Бразилия (1987). Был найден некий бесхозный объект, который оказался разрушенным высокорадиоактивным источником Цезия-137. Сильные дозы облучения получили 10 человек, 4 из них погибли.
  2. Бухта Чажма, СССР (1985).
  3. Три-Майл-Айленд, США (1979).
  4. Айдахо, США (1961).
  5. Санта-Сюзана, США (1959).
  6. Виндскейл-Пайл, Великобритания (1957).
  7. Чок-Ривер, Канада (1952).

INES 6. Аварии, в которых выброс радиоактивного материала в окружающую среду эквивалентен 1000–10000 ТБк 131 I. Требуется эвакуация населения или укрытие его в убежищах. Пример известен один. Это самая первая радиационная авария в мире подобного масштаба – Кыштымская, СССР (1957).

«Маяк» – предприятие по хранению и переработке ядерного топлива в Челябинской области. В 1957 году произошел взрыв емкости содержащей 70–80 тонн ядерных отходов. Образовалось радиоактивное облако, которое разнесло опасные вещества по территории более 23 тыс. км 2 на головы 272 тыс. человек. Впервые 10 суток от облучения погибло порядка 200 чел.

INES 7. Этот балл присваивается крупнейшим радиационным авариям и катастрофам в мире. Они характеризуются обширным радиационным воздействием на людей и окружающую среду, эквивалентны выбросу в 10 000 ТБк 131 I и более. Несут в себе колоссальные последствия для здоровья человека и состояния природы. Требуется срочное осуществление запланированных и длительных контрмер, разработанных для подобных случаев. Этот рейтинг присвоен двум самым крупным радиационным авариям в мире:

  1. Фукусима (2011) . Череда трагических событий обрушилась на Японию в тот год. Не устояла перед ними и АЭС Фукусима-1. и последующее за ним оставили 3 реактора без электроснабжения, а значит и без системы охлаждения. Взрыв был неизбежен. Заражены радиацией, оказались обширные территории, больше всего в аварии пострадали воды океана. Зоной отчуждения стала 30-километровая территория вокруг АЭС. За первый год от лучевой болезни скончались приблизительно 1 тыс. чел.
  2. Чернобыль (1986) . Катастрофа на Чернобыльской АЭС произошла 26 апреля. В четвертом энергоблоке, где находилось порядка 190 тонн ядерного топлива, прогремел взрыв. Начавшаяся из-за ошибочных действий персонала авария приобрела неадекватные масштабы вследствие (как позже выяснилось) нарушений, допущенных при строительстве реактора.

В результате около 50 тыс. км 2 сельскохозяйственных земель стали непригодны для возделывания. В 30-километровую зону отчуждения попал город Припять, население которого на тот момент составляло 50 тыс. чел. А также другие населенные пункты.

Статистика радиационных аварий показывает, что в последующие двадцать лет от облучения погибло около 4 тыс. чел.

Военный «атом»

О разработке ядерного оружия стали задумываться еще с 1938 года. В 1945 г. США впервые в мире испытали ядерную бомбу на своей территории, и следом еще две сбросили на города Японии: Хиросиму и Нагасаки. Было убито более 210 тыс. человек, .

Согласно данным Википедии город Хиросима был полностью восстановлен в 1960 году. За период с 1945 по 2009 год известно о 62 испытаниях ядерного оружия и 33 авариях военной техники, использующей ядерные силовые установки в качестве двигателя или с ядерным оружием на борту.

Годы

Тип выброса, кол-во шт .

Испытание оружия Аварии

военной техники

1945–1949 2
1950–1959 13 1
1960–1969 28 9
1970–1979 12 3
1980–1989 7 7
1990–1999 2
2000–2009 11

С 90 годов тестирование оружия прекратилось. Так как в 1996 году большинство стран подписало договор о запрете ядерных испытаний.

Статистика радиационных аварий в мире: мнение экспертов

Существуют два мнения о вреде радиации. Одни ученые проводят скрупулезные расчеты, и утверждают, что на долю техногенных радиационных аварий в мире и испытаний ядерного оружия приходится всего 1% от общего радиационного фона. Что ядерная промышленность – это неисчерпаемый ресурс, за которым будущее.

По мнению других статистика радиационных аварий в мире показывает, что в экономическом плане от ядерной энергии нет никаких плюсов. Поэтому эксперты призывают отказаться от ядерной промышленности, оставить ее в прошлом. Технологии имеют высокую стоимость на стадии разработки и строительства, а ущерб в случае аварии перекрывает собой всю возможную выгоду. Не говоря уже о человеческих жертвах и негативном воздействии радиации на здоровье многих поколений вперед.

относит непредвиденный случай, обусловленный нарушением технологического процесса, неисправностью оборудования и другими причинами, который создает повышенную радиационную опасность для персонала и населœения.

Наиболее серьезными источниками радиационных аварий являются предприятия, вырабатывающие или использующие атомную энергию. К ним относятся исследовательские реакторы, производства искусственных изотопов, атомные электростанции (АЭС) и станции теплоснабжения (ACT), атомные теплоэлектроцентрали (АТЭЦ), а также предприятия металлургии химической промышленности и т.д.

Получение электрической или тепловой энергии является главной областью мирного применения ядерных технологий. В основу такого производства положен так называемый ядерный топливный цикл (ЯТЦ).

Являясь наиболее мощными и сложными, технические системы атомных энергетических производств являются основным источником серьезных радиационных аварий. По данным Международного агентства по атомной энергетике (МАГАТЭ) только в период с 1971 no 1985 ᴦ.ᴦ. в 14 странах мира на АЭС имели место более 150 аварий различной тяжести, ᴛ.ᴇ. в среднем около 10 в год. Основными причинами аварий на АЭС являются:

Ошибки в проектах, дефекты - на их долю приходится 30,7% всœех аварий;

Износ оборудования, коррозионные процессы - 25,5%;

Ошибки оператора- 17,5%;

Ошибки в эксплуатации - 14,7%;

Прочие причины - 11,6%.

Наиболее серьезной аварией, быстро переросшей в глобальную катастрофу, стала авария на Чернобыльской АЭС (Украина, СССР) 26 апреля 1986ᴦ. В результате последовательных ошибок, допущенных операторами ядерного реактора, в нем начал накап­ливаться водяной пар.
Размещено на реф.рф
Он реагировал с находящимся в реакторе горячим цирконием, и образовывался водород. Давление водо­рода в активной зоне реактора нарастало, что привело в конеч­ном итоге к разрушению верхней части реактора, четвертого блока станции, часть здания и кровля машинного зала АЭС. При соприкос­новении с воздухом газообразная смесь взорвалась, и от возник­шего пламени загорелся графитовый замедлитель, который про­должал гореть несколько дней.

В результате взрыва и разрушения защитных и ограждающих конструкций на первой стадии произошел выброс ядерного топлива (на высоту до 1 км), а также высокоактивных обломков конструкций активной зоны, графита͵ продуктов делœения и т.п. На второй стадии (до 1 мая) мощность выброса в виде, главным образом, топливной и графитовой пыли уменьшилась. На третьей стадии (2-6 мая) наблюдалось нарастание мощности выброса, обусловленное непродуманной попыткой засыпать шахту реактора свинцом, материалами на базе бора, песком и глиной без организации теплоотвода. В результате произошел дополнительный разогрев оставшегося содержимого реактора и проплав его опорной плиты; образовавшаяся раскаленная масса проникла в подреакторные помещения. На четвертом этапе (после 6 мая) мощность выброса резко упала и в дальнейшем стабильно уменьшалась.

Радиоактивные вещества, нахо­дящиеся в реакторе, попали в атмосферу и образовали радиоак­тивное облако, размеры которого составляли 30 км в ширину и приблизительно 100 км в длину. Распространившись затем на большое расстояние, облако вызвало радиоактивное заражение местности. Зона существенного загрязнения местности (с уров­нем загрязнения более 5 мр/ч) составила около 3000 км 2 . Несколь­ко десятков человек погибло в результате аварии. Отмечены так­же многочисленные случаи заболевания лучевой болезнью. Свыше 100000 человек, проживавших в радиусе 30 км от реактора пришлось эвакуировать вскоре после аварии.

В результате аварии образовалось три радиоактивных следа на поверхности земли: северный, западный и южный и стойкое радиоактивное заражение в пределах этих следов на территориях Украины, России, Белоруссии. Повышение радиоактивности было зафиксировано в Финляндии, Норвегии и других северных странах.

Опыт Чернобыля и других аварий на АЭС и предприятиях ЯТЦ также показал, что основными источниками опасных из лучений при серьезных радиационных авариях являются: активная зона разрушенного реактора; газо-аэрозольное облако радиоактивных благородных газов и радиоактивных веществ; выброшенных из реактора; обломки активной зоны, конструкции биологической зашиты самого реактора, машин и механизмов, выброшенные из здания реактора в момент аварии; мелкодисперсные радиоактивные вещества в твердой и жидкой форме, вынесенные из реактора потоком теплого воздуха и равномерно распределœенные по поверхности земли, зданий, сооружений, насаждений и других объектов в районе аварии.

Воздействие аварий рассматриваемого типа на окружающую среду сводится помимо взрыва и локальных пожаров к радиоактивному загрязнению, осуществляемому через гидро- и воздушный перенос, диффузию в почву. Радиоактивные загрязнения имеют малую вымываемость атмосферными осадками и паводковыми водами. Торф, чернозем, суглинки и глины являются грунтами, которые особенно хорошо удерживают радиоактивные осадки. До 90% всœех осадков сосредотачивается в слое грунта толщиной до 2...3 см.

Последствия радиационных аварий для людей и ущерб, наносимый ими природе, бывают разделœены на следующие категории:

‣‣‣ немедленные смертельные случаи и травмы;

смертельные случаи, травмы и. др., возникающие среди персонала и населœения в процессе аварии (до локализации очага аварии и прекращения выброса опасных веществ);

‣‣‣ латентные (продленные) смертельные случаи и заболевания, в т.ч. будущих поколений;

‣‣‣ материальный ущерб от радиоактивного загрязнения, включая вывод земель из пользования на длительный, период, вторичный ущерб от изменения флоры и фауны;

‣‣‣ материальный ущерб от мероприятий по ликвидации по- следствий включая расходы на эвакуацию и новое размещение пострадавшего населœения, медицинское обслуживание, дезактивацию и дегазацию, ущерб от использования невосполнимых ресурсов;

‣‣‣ социальный ущерб для общества и его институтов.

Защита от радиационных аварий на предприятиях, использующих ЯТЦ, осуществляется с помощью специальных технических систем и защитных конструкций (оболочек) из желœезобетона с внутренней металлической облицовкой, заключающих внутри себя активную зону. Толщина стенок такой оболочки достигает 1,5 м. Эти оболочки обеспечивают также биологическую защиту персонала. После аварии в Чернобыле АЭС Чернобыльского типа, не обеспечивающие локализацию внутреннего аварийного воздействия, строительством запрещены.

Расчет оболочек должен обеспечить безопасность реактора при всœех гипотетически возможных видах воздействий, включая большинство особых (сейсмика, взрыв, удары и т.п., см. п.п. 3.1, 3.2, 3.4). Авария в Чернобыле выделила также в качестве особого воздействия проплав днища реакторного отделœения высокотемпературной топливной массой с последующим уходом ее в грунты с водоносными слоями. Одним из возможных путей решения этой проблемы должна быть возведение с помощью специальной техники желœезобетонных или металлических охлаждаемых ловушек, рассекающих массу и контролирующих охлаждение ее частей.

Защита людей и оборудования на радиоактивно зараженной местности достигается, главным образом, оборудованием обитаемых объектов защитными экранами из противорадиационных материалов (ПРМ). В качестве последних используются вольфрам, свинœец в виде листа и дроби, желœезо.

Защита из ПРМ должна быть общей, локальной, индивидуальной и комбинированной. Для общей защиты ПРМ размещается по всœем наружным и внутренним поверхностям помещения (обычно для группы людей). Локальная защита реализуется путем размещения ПРМ на направлениях, по которым преимущественно распространяются опасные излучения; примером должна быть пол кабины, кресло и подлокотники водителя автомашины, защищенные листами свинца. Индивидуальная защита обеспечивается ношением специальной защитной одежды. Комбинированная защита сочетает в себе всœе три способа.

Наибольшей проникающей способностью обладают, как известно, гамма- и нейтронное излучения. Поражающее действие проникающей радиации характеризуется энергией, переданной излучением единице массы вещества, или поглощенной дозой. За единицу поглощенной дозы принят 1 Грей - доза излучения, соответствующая энергии 1 Дж, переданной ионизирующим излучением любого вида облучаемому веществу массой 1 кᴦ. Внесистемной единицей поглощенной дозы является рад; 1 рад= 10 Гр.

Для защиты от нейтронного излучения предпочтительно применение водородосодержащих материалов (вода, полиэтилен и т.п.). При этом поглощение нейтронов может сопровождаться испусканием вторичного гамма-излучения; данный эффект должна быть существенно снижен введением в материал защиты бора.

Гамма-излучение хорошо ослабляется тяжелыми металлами, к примеру, свинцом.

При работе на радиоактивном следе даже при низких уровнях радиации на объектах должны функционировать системы очистки воздуха, а люди, находящиеся на открытой местности, должны использовать индивидуальные средства защиты органов дыхания.

Одна из особенностей радиоактивного загрязнения состоит по сути в том, что его невозможно обнаружить без помощи специальных дозиметрических приборов, так как радиация не имеет каких-либо внешних признаков, не обладает ни цветом, ни запахом, ни вкусом. Радиоактивные излучения обладают способностью проникать через различные толщи материала и вызывать нарушения некоторых, жизненно важных процессов в организме человека. Человек в момент воздействия радиации не получает телœесных повреждений и не испытывает болевых ощущений, однако, в результате облучения у пораженного позже может развиться лучевая болезнь.

Радиационное облучение бывает внешнее и внутреннее. При внешнем облучении источник находится вне живого организма. В этом случае следует быстро покинуть зараженную зону или спрятаться в укрытии. Внешнее облучение значительно поглощается стенам здании и одеждой.

Но радиоактивные вещества могут попасть и внутрь организма - с пылью воздухом, пищей и водой. Происходит внутреннее облучение - это основная угроза для людей оказавшихся в зоне радиоактивного заражения. В организме радиоактивные вещества ведут no-разному. Одни скапливаются в костях, другие – в печени, почках.

К примеру, радиоактивный йод концентрируется в щитовидной желœезе, которая вырабатывает гормоны и регулирует жизнедеятельность организма. Обычно в организме содержится очень мало йода. Йод нужен щитовидной желœезе для нормальной работы, а накопление в ней радиоактивного йода работу желœезы нарушает. Чтобы избежать подобной опасности, для профилактики в первые часы после аварии крайне важно насытить щитовидную желœезу обычным йодом: тогда она не примет йод радиоактивный. Стоит сказать, что для насыщения обычным йодом применяются таблетки и порошки йодистого калия. Принимать его следует в течение первого времени ежедневно, по одной таблетке. В случае если таблеток нет, можно приготовить йодистую смесь: капель 5%-ного раствора йода на стакан воды. Принимать равными частями 4 раза в день.

Максимально ограничьте пребывание на открытой местности, при выходе из помещений используйте средства индивидуальной зашиты;

При нахождении на открытой территории не раздевайтесь, не садитесь на землю, не курите;

Перед входом в помещение обувь вымойте водой или оботрите тряпкой, верхнюю одежду вытряхните и почистите влажной щеткой;

Строго соблюдайте правила личной гигиены;

Принимайте пищу только в закрытых помещениях, руки тщательно мойте, рот полощите очень слабым раствором пищевой соды;

Воду употребляйте только из проверенных источников;

Исключите купание в открытых водоемах до проверки степени их радиоактивного загрязнения;

Не собирайте в лесу ягоды, грибы и цветы. Наблюдение этих рекомендаций поможет избежать заболевания лучевой болезнью.

Похожие публикации