Почему стареет человек и умирает. Старение клетки организма Стареющие клетки

Последние два-три года стали для геронтологии буквально прорывными. Сначала ученые нашли способ продлить жизнь дрожжей, червей и даже мышей с помощью голодания, потом – несколько генов, способных продлить активное долголетие. Удалось даже обнаружить связь между развитием половой системы, жировой ткани и продолжительностью жизни.

Но подход к молекулярным и клеточным основам старения не менялся уже несколько десятилетий: накопление мутаций, неизбежно возникающих при делении, постепенное разрушение белков и истощение «резервных» систем.

Мартин Хетцер из Института биологических исследований Салка и его коллеги смогли существенно уточнить это понимание :

За общими словами об изнашивании скрывается как минимум нарушение работы ядерных пор, обеспечивающих избирательный обмен содержимым между ядром и клеткой.

Несмотря на микроскопические размеры – от пяти до сотни микрометров, клетка сама включает ещё нескольких десятков органелл, главная среди которых – ядро, обеспечивающее регуляцию всех внутриклеточных и даже внеклеточных процессов. Внутри ядра, которое может занимать до 80% объема (у сперматозоидов), располагается самое ценное – генетическая информация, зашифрованная в последовательности ДНК.

Если бы не ядерная оболочка, то количество мутаций и сбоев в считывании кода просто бы не дало возможности клетке жить. Но несмотря на двойную мембрану, окружающую хромосомы,

Генетический аппарат не находится в изоляции: различные виды РНК постоянно покидают ядро, регулируя синтез белка, в то время как внутрь проникают сигналы, активирующие транскрипционные факторы.

Как и в случае с более «крупными» барьерами, работающими на уровне всего организма, ядерный тоже обладает избирательной проницаемостью: например, жирорастворимые молекулы, будь то стероидные гормоны или определенные лекарственные вещества, легко проникают через саму мембрану, больше похожую на тонкую масляную пленку с вкраплениями.

А вот нуклеиновые кислоты, белки и другие гидрофильные соединения обречены проходить через специальные каналы – ядерные поры. Несмотря на многообразие пропускаемых молекул, сами поры достаточно консервативно устроены у большинства организмов и состоят из внутреннего канала и симметричных наружных частей, похожих на расположенные в вершинах восьмиугольника белковые молекулы.

Как показали Хетцер и соавторы публикации в Cell, со временем эти поры начинают «течь», что и становится причиной более «заметных» последствий – отложения амилоидных бляшек вдоль сосудов мозга, разрушения хрящей в суставах, «одряхления» сердца.

На примере мышечных клеток, а потом – и всего организма нематоды C. elegans ученые продемонстрировали, что периферическая часть ядерного канала регулярно обновляется, в то время как центральная перестраивается только во время деления клеток, при котором оболочка ядра сначала разрушается, а потом образуется вновь. Соответственно, ядерные поры постепенно «изнашиваются», но, в отличие от других внутриклеточных систем, не обновляются, что и приводит к «протечке». В результате в ядро попадают не только мутагены, но и другие молекулы, нарушающие работу генетического аппарата.

Если дело касается постоянно обновляющихся клеток кожи или эпителия кишечника, то такой проблемы не возникает, но как быть нервным или мышечным клеткам, практически не делящимся на протяжении всей жизни? Неудивительно, что их обмен веществ завязан не только на «сигналы» из ядра, но и на устоявшиеся каскады реакций, не требующих быстрого вмешательства генетического аппарата.

Открытие Хетцера не стало очередной «самодостаточной» гипотезой в теории старения. Ученые продемонстрировали, как активные формы кислорода, давно ставшие главным врагом геронтологов, способны ускорять изнашивание ядерных пор, а вместе с этим и старение всей клетки. Остается надеяться, что система, компенсирующая эти «протечки», всё же существует, и если удастся её обнаружить, то это станет новым витком в изучении активного долголетия.

6057 0

Последовательность старения клеток организма

Начиная с работ Мино (Minot, 1908), Метальникова (1917), Шмальгаузена (1926), Коудри (Cowdry, 1939), идет линия исследований, утверждающая связь между специализацией, дифференциацией клеток, способностью их к делению и старением.

Вместе с потерей способности клеток к делению они теряют возможность существенно обновляться , создаются условия их ускоренного старения. Коудри (Cowdry, 1939) предложил классификацию, отражающую, с его точки зрения, эту связь между способностью клеток к делению и развитием в них старения.

К первой группе относятся клетки, существование которых начинается с митоза и кончается митозом (базальные клетки эпидермиса, сперматогонии и др.). Жизнь этих клеток коротка. Уловить в них развитие старения не удается. Вторая группа - более специализированные клетки, обладающие дифференцированным митозом: клетки, в которых можно проследить ряд возрастных изменений, таких как накопление гемоглобина, переход гемоцитобласта к нормобласту и эритроциту, появление кератина в коже. Третья группа - специализированные клетки с выраженными признаками старения.

Они проявляют способность к митозу только в особых условиях, например при повреждении. К ним относятся клетки печени, почек, щитовидной железы и др. Четвертая группа - высокодифференцированные клетки, неспособные к митозу ни при каких условиях (соматические мышечные волокна, нервные клетки и др.). В этих клетках развиваются отчетливые проявления старения.

Недостаток обычных классификаций последовательности старения отдельных клеток в независимом рассмотрении их друг от друга. В естественных условиях в процесс возрастных изменений вовлекаются сложнорегулируемые функциональные системы, развиваются старение одних клеток и адаптивные сдвиги в других. В этих условиях старение постмитотических клеток может оказывать различное влияние на активно делящиеся клеточные элементы. В условиях целостного организма старение клеток является сложным сплавом их собственных возрастных изменений и регуляторных, трофических влияний.

С этих позиций можно условно выделить 3 типа клеток:

А) клетки, которым свойственно первичное старение;
б) клетки, у которых старение является сплавом собственных возрастных изменений и влияний регуляторных, трофических, средовых, а также связанных с первичным старением других клеточных элементов;
в) клетки, у которых в естественных условиях существования старение в основном вторично и опосредовано через весь комплекс внутриорганизменных регуляторных влияний, включая и механизмы общей трофики - кровоснабжение, проницаемость барьеров и др. (Фролькис, 1970).

К первой группе следует отнести нервные клетки, многие соединительнотканные элементы; ко второй - мышечные волокна, клетки железистых образований, печени, почек; к третьей - эпидермис, эпителий во многих органах и др.

Клеткам третьей группы тоже свойственны свои возрастные изменения, однако темп и выраженность регуляторных сдвигов предваряют во многом эти изменения. Признание этого положения закономерно приводит к важному для биологии старения выводу - интимные механизмы старения различных клеток неоднородны; существует несколько типов старения клеток.

Кроме свойств клеток sui generis, темп и направленность их старения зависят от отношения их к определенной функциональной системе; поэтому структурно однородные элементы, относящиеся, по Коудри (Cowdry, 1939), к одной и той же группе, стареют в различном темпе.

Так, например, в старости неодинаково изменяются структура и функция артериол скелетной мышцы, почек, кишечника; мотонейронов, мышечных волокон, принимающих участие в акте сгибания и разгибания; различных структур одного и того же отдела ЦНС (например, гипоталамуса) и др.

Более того, существует корреляция в темпе развития старения различных структурных элементов в пределах одной функциональной системы (отличие в возрастных изменениях мотонейронов, периферических нервов, мышечных волокон, сосудов, рецепторов одного функционального двигательного комплекса по сравнению с другим).

При анализе механизмов старения, как правило, недоучитывается клеточная специфика , обычно стремятся найти, описать универсальный первичный механизм старения всех клеток. Вместе с тем конкретные механизмы старения нейрона, миокардиоцита, гепатоцита, секреторной клетки, фибробласта и т. д. отличаются во многом друг от друга.

В одних случаях механизмы старения связаны с первичными сдвигами в генетическом аппарате клеток, в других - с изменением в системе энергетического обеспечения клетки, в третьих - с нарушениями в процессах реактивности и транспорта веществ. Итак, последовательность старения различных клеток определяется уровнем их дифференцировки, специализации, митотической активностью и отношением к различным регулируемым функциональным системам.

Организм стареет не как сумма клеток, а как сложная биологическая система.

Вот почему так важно выяснение межклеточных взаимодействий, на основе которых можно понять генез возрастных изменений нейрогуморальной регуляции иммунитета, питания, движения и других функций организма.

Возрастные изменения в соединительнотканных элементах могут привести к нарастающим старческим сдвигам и в других системах организма, к склерозу внутренних органов при старении (Богомолец, 1938). Собел (Sobel, 1962) предполагает следующую последовательность событий: время -> уплотнение волокон соединительной ткани -> клеточная гипоксия -> ухудшение питания -> гибель паренхиматозных элементов, пролиферация мезенхимальных клеток и др.

По мнению Бюргера (Burger, 1960), многие соединительнотканные элементы относятся к брадитрофным тканям, характеризующимся пониженным метаболизмом. При старении сдвиги в метаболизме брадитрофных тканей, медленно прогрессируя, приводят к их существенным изменениям, оказывая влияние на старение всего организма.

Изменения соединительной ткани по-разному влияют на старение различных структур. В одних случаях сдвиги в них вторичны по отношению к первично стареющим постмитотическим клеткам; в других - могут стать одним из первичных механизмов, ведущих к старению активно делящихся клеточных элементов.

Структурные изменения клеток

В процессе старения в различных органах и тканях развиваются структурные изменения , обладающие органоспецифическими особенностями, но в то же время имеющие общие черты. К последним следует отнести: избыточное развитие и качественные изменения соединительной ткани; изменения стенки кровеносных капилляров с формированием волокнистых структур в утолщенном базальном слое и расширенном перикапиллярном пространстве (Ступина, Саркисов, 1978) (рис. 16, вкл.).



Рис. 16. Формирование фибриллярных структур в расширенном базальном слое стенки капилляра (обозначено стрелкой) и в расширенном перикапиллярном пространстве надпочечника старой крысы. Микрофото. Ув. 9000.


Наблюдаются атрофия и дистрофические изменения в отдельных клетках. Количество паренхиматозных клеток падает; это относится прежде всего к клеткам статических популяций. В последующих статьях мы приведем данные о потере нейронов в старости. Сато и Тауши (Sato, Tauchi, 1978), изучавшие несколько сотен аутопсий печени, почек, поджелудочной железы, считают, что уменьшение количества клеток паренхиматозных органов является фундаментальным признаком старческих изменений.

Вместе с тем оставшиеся и активно функционирующие клетки не уменьшаются в размерах, а часто увеличиваются, что следует расценивать как проявление компенсаторной гипертрофии в связи с утратой части клеток. Так, имеются указания на увеличение объема кардиомиоцитов (Левкова, 1974; Fleischer et al., 1978), нейронов (Межиборская, 1970; Давиденко, 1972), гепатоцитов (Watanabe et al., 1978) эпителиальных клеток различных паренхиматозных органов (Sato, Tauchi, 1978).

Увеличение объема клетки при этом происходит преимущественно за счет цитоплазмы; ядро увеличивается в меньшей степени, в результате чего ядерно-цитоплазматическое соотношение уменьшается. Важной компенсаторной реакцией является увеличение числа двуядерных и полиплоидных клеток (Watanabe et al., 1978), что рассматривают как активное состояние клеток в условиях ингибирования клеточного деления (Sato, Tauchi, 1973).

Ядра клеток, наряду с некоторым увеличением объема, изменяют свою форму. Для ядер старых клеток характерна неровная, фестончатая поверхность за счет многочисленных инвагинаций ядерных мембран (рис. 17).



Рис. 17. Множественные инвагинации ядра (Я) кардиомиоцита. Очаговое набухание митохондрий (М), разволокненне миофиламентов в сердце старой крысы. Микрофото. Ув. 12 000.


Происходящее при этом увеличение поверхности ядерных мембран рассматривается как компенсаторный процесс, ведущий к увеличению поверхности соприкосновения между ядром и цитоплазмой. Такие изменения формы ядер описаны в кардиомиоцитах (Ступина, 19756; Sachs et al., 1977), нейронах, эндотелиоцитах. Эндрю (Andrew, 1978) сообщает об аналогичных перестройках в ядрах эпителиальных клеток паренхиматозных органов.

В клетках наблюдается расширение перинуклеарного пространства между внутренней и наружной ядерными мембранами, с формированием цистерн, разделенных ядерными порами; при этом нередко отмечается расширение ядерных пор (Артюхина, 1979).

В ядрах увеличивается доля маргинально расположенного конденсированного хроматина и уменьшается доля диффузного хроматина. Аналогичные изменения описаны при старении клеток в культуре ткани (Van Gansen, 1979). При старении появляются так называемые ядерные включения, которые могут располагаться в самом ядре в виде фибриллярных пучков, тубуло-мембранных систем, вирусоподобных частиц; либо между мембранами ядра в виде мультивезикулярных и электронно-плотных телец; либо в цитоплазматических инвагинациях, чередуясь со складками ядерной мембраны.

Природа этих включений неизвестна, однако полагают, что они уменьшают «эффективный» ядерный объем. В процессе старения изменяется плотность цитоплазматического матрикса клетки. Как в клетках статических популяций, так и в других появляется резко просветленный цитоплазматический матрикс с явлениями гидратации, уменьшением количества гранул РНК; в других клетках матрикс, наоборот, слишком уплотнен, с очагами некробиоза и деструкции.

Один из постоянных признаков процесса старения клетки - морфологические изменения митохондрий.

Часть органелл имеет просветленный матрикс, расширенные межкристные промежутки, дискомплексированные кристы (рис. 17). Вместе с тем в старческом возрасте определенный процент митохондрий представляется значительно измененным в виде резкого набухания, с разрушением крист и внутренней мембраны или же со спирализацией и миелинизацией ее; появляются электронно-плотные митохондриальные включения (Wilson, Franks, 1975; Sohal, 1978), разрушается наружная мембрана (Nickerson, 1979).

Изменяются форма и размеры митохондрий - наряду с органеллами обычных для клетки размеров появляются крупные, иногда гигантские митохондрии, что рассматривается как компенсация редукции количества органелл, вызванной ингибированием деления митохондрий.

Гигантские митохондрии в клетках при старении описаны в кардиомиоцитах (Ступина, 1975б), нейронах (Артюхина, 1979), гладкомышечных клетках стенки вен (Фролькис, Евдокимов, 1979), в печени (Franks, 1974), в клетках щитовидной железы (Горбуноба, 1979). Имеются данные об уменьшении плотности митохондриального объема в клетке за счет числа этих органелл.

В миокарде увеличивается относительный объем митохондрий (Офицеров, Загоруйко, 1977; Sachs et al., 1977), что также можно рассматривать как компенсаторную перестройку в связи с дистрофическими изменениями в части митохондрий и нарушением их функций. Вместе с тем площадь митохондриальных мембран на единицу объема митохондрий снижается (Sachs et al., 1977).

В процессе старения происходят изменения в белоксинтезирующей системе клетки.

В клетках статических популяций наблюдаются расширение цистерн гранулярной и гладкой эндоплазматической сети, заполнение просвета цистерн электронно-плотным содержимым, тубулярными структурами; происходит уменьшение количества рибосом на мембранах, отмечаются уменьшение и лизис полисомальных розеток, рибосом (рис. 18) (Suzuki et al., 1978; Артюхина, 1979).



Рис. 18. Липофусцин и липидные гранулы (ЛФ), цистерны гранулярной эндоплазматической сети (ГЭС), бедные гранулами РНК в цитоплазме нейрона мамиллярного ядра головного мозга старой крысы. Микрофото. Ув. 30 000.


В клетках печени у старых животных эндоплазматическая сеть, как показал стереологический анализ, имеет меньшую площадь поверхности по сравнению с таковой у взрослых (Schmucker et al., 1978). В пластинчатом комплексе Гольджи при старении происходят редукция, рексис, уменьшение линейной площади поверхности, что отмечено в нейронах (рис. 18), гепатоцитах (Schmucker et al., 1978).

Расширение пузырьков и накопление в них жидких фракций и электронно-плотных гранул рассматриваются как результат застойных явлений, связанных со снижением обменных процессов между структурами аппарата Гольджи и цитоплазмой клетки (Артюхина, 1979).

Вместе с тем Манина (1978) в гипертрофированных цистернах обнаружила липопротеиды и считает, что пластинчатый комплекс в нервных клетках старых животных сохраняет высокую синтетическую и функциональную способность. В цитоплазме нейронов появляются так называемые окаймленные везикулы, находящиеся в интимной связи с элементами пластинчатого комплекса и лизосомами.

Довольно постоянным признаком старения клеток различных популяций является увеличение количества первичных лизосом , появляющихся в большом количестве в области перикариона, между митохондриями, вблизи очагов деструкции и свободно в цитоплазме. Значение этого факта может быть весьма многообразно, если учесть функциональную роль лизосом (Покровский, Тутельян, 1976).

Происходят и качественные изменения лизосом
- в них нарастает количество трудноперевариваемых веществ, изменяется активность лизосомальных ферментов в зависимости от типа клеток и вида ферментов (Asano et al., 1979; Knoock, 1979), наблюдается снижение стабильности лизосомальных мембран, приводящее к освобождению лизосомальных гидролаз и деструктивным изменениям в цитоплазме клеток статических популяций, а также в печени (Покровский, Тутельян, 1976).

Таким образом, участие лизосом в процессах старения может быть обусловлено:

1) повреждающей литической активностью внутри клетки - чрезмерной аутофагией, утечкой гидролаз через поврежденную мембрану лизосом;
2) экструзией ферментов вследствие изменения клеточной мембраны или гибели клетки, что ведет к повреждению соединительной ткани, сосудов, образованию коллагена, продуцированию антител;
3) нарушением литической активности как следствие блокирования непереваренными продуктами.

Наряду с нарастанием количества первичных лизосом в клетках в процессе старения происходит формирование вторичных лизосом - аутофагического типа, а также остаточных телец, которые могут участвовать в процессах переваривания, пока не будут полностью блокированы непереваренными продуктами.

Остаточные тельца, нагруженные липофусцином, при старении обнаруживаются в возрастающем количестве в нейронах и глиальных клетках, миокардиоцитах, гепатоцитах, клетках эндокринных желез, а также в остеобластах, остеоцитах, эндотелиальных клетках (рис. 18) (Давиденко, 1976; Шапошников, 1978; Артюхина, 1979; Квитницкая-Рыжова, 1980).

Многие исследователи связывают возрастное накопление липофусцина с лизосомами (Покровский, Тутельян, 1976) и структурами пластинчатого комплекса (Артюхина, 1979). Следует отметить исследования Карнаухова (1971), показавшего наличие в липофусцине миоглобиноподобных веществ и каротиноидов, что дало возможность автору связать липофусцин с созданием внутриклеточного депо кислорода, позволяющего клеткам теплокровных животных компенсировать малую скорость поступления кислорода в условиях гипоксии, вызванной старением или экспериментальной гипоксией.

Некоторые исследователи считают, что наружная клеточная мембрана наиболее устойчива в процессе старения (Артюхина, 1979). Действительно, сохраняется непрерывность клеточной мембраны, так как нарушение целости мембраны ведет к гибели клетки.

Однако в процессе старения в наружной клеточной мембране наблюдаются не только функциональные, но и структурные изменения. В ней отмечены очаговые уплотнения и утолщения. Кроме того, обнаруживаются структурные изменения, свидетельствующие о нарушении ее функции.

Так, в эндотелиальных клетках капилляров в процессе старения наблюдается уменьшение интенсивности микропиноцитоза, уменьшение количества микроворсинок и микровыростов (Горячкина и др., 1977; Ступина и др., 1978а), что особенно демонстративно в условиях повышенной функциональной нагрузки. Демонстративны также возрастные изменения специализированных мембранных структур. Так, в гладкомышечных клетках нижней полой вены наряду с очаговым утолщением клеточных мембран отмечено уменьшение количества нексусов (Фролькис, 1973). Изменение щелевидных контактов при старении выявлено в клетках культуры ткани фибробластов человека (Kelley et al., 1979).

Таким образом, в процессе старения во всех компонентах клеток наблюдаются структурные изменения, имеющие гетерогенный характер. Наряду с атрофированными клетками, имеющими выраженные возрастные изменения, наблюдаются сохранные клетки, ничем не отличающиеся от клеток молодых организмов.

Н.И. Аринчин, И.А. Аршавский, Г.Д. Бердышев, Н.С. Верхратский, В.М. Дильман, А.И. Зотин, Н.Б. Маньковский, В.Н. Никитин, Б.В. Пугач, В.В. Фролькис, Д.Ф. Чеботарев, Н.М. Эмануэль

Мало кому известно, но в XVIII веке средняя составляла всего 24 года. Через 100 лет это число увеличилось вдвое - до 48 лет. Сейчас новорожденный может в среднем прожить 76 лет. С учетом последних открытий в биологии, ученые считают, что эта цифра будет еще долго неизменна.

Введение

Сегодня поиски «молодильных яблок» и ответа на вопрос о том, почему сконцентрированы в области изучения генетической структуры клеток, и при этом все меньше обращается внимание на роль стрессов и диет в жизни людей. Желающие достичь бессмертия обращаются в антивозрастные клиники, выплачивая каждый год по 20 000 долларов за гормональную терапию, анализ ДНК и космическую хирургию. Однако эти экспериментальные методы не дают никаких гарантий бессмертия - просто специалисты обещают продлить жизнь.

Давайте вместе узнаем, когда и почему стареет человек, какие бывают признаки и причины старения и как замедлить процесс старения.

Понятие «старения»

Слово «старость» в настоящее время ассоциируется с омолаживающими косметическими средствами и хирургическими операциями. Это связано с тем, что современная наука больше нацелена на изучение космических пространств и изобретение новейших технологий. О бессмертии просто забыли.

Но доктор Джон Ленгмор, профессор университета Мичиган, и его группа «заглянули» внутрь клеток, в самую сущность человеческой жизни. В частности, он изучил молекулу ДНК и обнаружил на ее концах цепь повторяющихся пар ферментов, которые были впоследствии названы «теломерами». Они работают в качестве защитных «колпачков» на конце хромосом, которые со временем не дают возможность молекулам разделиться пополам, что и приводит к старению и умиранию человека.

Что такое «теломеры»

Ученые отмечают, что, когда человек становится старше, длина теломерных цепей уменьшается. В конце концов они становятся настолько короткими, что репликация клеток вызывает смертельные ошибки или недостающие фрагменты в последовательности ДНК, препятствуя способности клетки заменить себя. Эта точка предела, когда клетка потеряла жизненный код ДНК и не может воспроизвести себя, называется пределом Хейфлика. Это мера того, сколько раз клетка может копировать себя, прежде чем умрет.

Некоторые клетки в нашем организме имеют очень высокий предел Хейфлика. Например, клетки, которые находятся внутри нашего рта и в кишечнике, постоянно стираются и заменяются. Действительно, они появляются, чтобы иметь возможность вырастить теломеры даже в зрелом возрасте. Тогда ученые заинтересовались, почему некоторые клетки препятствуют росту теломер с возрастом, а некоторые нет.

«Запрограммированные» клетки

Доктор Ленгмор, используя физические, биохимические и генетические методы для изучения структуры и функции теломеров, разработал бесклеточную систему для восстановления функциональной модели теломеров с использованием синтетической ДНК. А также выявил механизм, с помощью которого теломеры могут «стабилизироваться», и условия, которые приводят к их нестабильности.

Белковые факторы, «ответственные» за стабилизацию концов хромосом, были клонированы и изучены. дала возможность непосредственно визуализировать структуру модели теломер. Это интересное исследование привело ко многим перспективным открытиям.

Ученые обнаружили важный фермент, который может «выключить» теломеры, чтобы молекула ДНК смогла бесконечно раздваиваться. Он называется теломераза. Но, когда мы становимся старше, количество теломераз в клетках уменьшается. Это и есть ответ на вопрос о том, почему стареет организм человека.

Пять основных теорий

Итак, ученые доказали, что смерть наступает в связи с потерей большого количества клеток. Существует несколько теорий, которые объясняют, как предел Хейфлика выражается в клетках нашего организма. Рассмотрим их подробнее:

1. Гипотеза об ошибке. Данная теория определяет ошибки, которые могут возникнуть в химических реакциях при производстве ДНК и РНК, так как метаболический механизм не является точным на 100 %. Гибель клеток может быть результатом этих неустраненных ошибок.

2. Теория свободных радикалов. Отвечает на вопрос о том, почему стареет человек, по-своему. Неконтролируемые могут повредить мембраны, которые окружают клетки и клеточные молекулы ДНК и РНК. Этот ущерб в конечном итоге приводит к гибели клетки.

В настоящее время эта теория горячо исследуется. Опыты на мышах показали, что снижение на 40 % потребления калорий приводит к удвоению их продолжительности жизни и уменьшению количества свободных радикалов. К тому же ученые выявили, что витамины Е и С хорошо их поглощают.

3. Теория сшивания утверждает, что старение живых организмов обусловлено случайным образованием (путем сшивания) «мостиков» между молекулами белка, которые затем препятствуют процессу производства РНК и ДНК. Это сшивание может быть вызвано многими химическими веществами, появляющимися обычно в клетках в результате метаболизма, а также с помощью загрязняющих веществ (например, свинца и табачного дыма).

4. Мозговая гипотеза отвечает на вопрос о том, почему люди быстро стареют, по-иному. Это происходит из-за «поломки» в гомеостазе функций организма, особенно в контроле гипоталамуса над гипофизом, который, в свою очередь, вызывает расстройство в контроле над эндокринными железами.

5. Аутоимунная теория. Она была предложена доктором Рой Валфордом в Лос-Анджелесе, который предполагает, что два типа белковых кровяных клеток иммунной системы (В и Т) теряют свою энергию из-за «нападения» бактерий, вирусов и раковых клеток. А когда В- и Т-клетки становятся неисправными, они заражают здоровые клетки организма.

Почему стареет человек: причины и признаки

В какой-то момент жизни, часто ближе к 30 годам, сигнальные признаки старения начинают быть очевидными. Их можно увидеть во всем: на коже появляются морщины, снижается прочность и гибкость костей и суставов, сердечно-сосудистая, пищеварительная и нервная системы подвергаются изменениям.

Пока никто не может точно сказать, почему стареет человек. Но определенно выявлено, что генетика, диеты, физические упражнения, болезни и другие факторы влияют на этот процесс.

Внимательно ознакомимся с признаками и причинами старения основных систем организма:

1. Клетки, органы и ткани:

Теломеры, которые находятся на концах хромосом внутри каждой клетки, со временем препятствуют раздвоению молекулы ДНК;

Накапливаются отходы в клетках;

Соединительная ткань становится более жесткой;

Максимальная функциональная способность многих

2. Сердце и кровеносные сосуды:

Стенка сердца становится толще;

Сердечные мышцы начинают работать менее эффективно, перекачивая то же количество крови;

Аорты становятся толще, жестче и менее гибкими;

Артерии медленнее снабжают кровью сердце и мозг, что является причиной того, почему стареет человек, признаки очевидны.

3. Жизненно важные функции:

Телу становится труднее контролировать температуру;

Частота сердечных сокращений занимает больше времени, чтобы вернуться к нормальному состоянию после тренировки.

4. Кости, мышцы, суставы:

Кости становятся тоньше и менее сильными;

Суставы - более жесткими и менее гибкими;

Хрящи в костях и суставах начинают ослабевать;

Мышечная ткань также теряет свою силу, это объясняет, почему стареет человек, причины данного процесса.

5. Пищеварительная система:

Желудок, печень, поджелудочная железа и тонкая кишка вырабатывают значительно меньше пищеварительных соков;

Движение пищи через пищеварительную систему замедляется.

6. Мозг и нервная система:

Число нервных клеток в головном и спинном мозге уменьшается;

В головном мозге могут образоваться аномальные структуры, такие как «бляшки» и «клубки», что приводят к ухудшению его работоспособности;

Число соединений между нервными клетками уменьшается.

7. Глаза и уши:

Сетчатка становится тоньше, а зрачки - жестче;

Линзы менее четкими;

Стены слухового прохода становятся тоньше, а барабанные перепонки - толще.

8. Кожа, ногти и волосы:

Кожа с возрастом станет тоньше и менее эластичной, что является причиной того, почему люди стареют внешне;

Потовые железы производят меньше пота;

Ногти растут медленнее;

Волосы получают серый окрас, а некоторые даже перестают расти.

Симптомы старения

Существуют общие симптомы старения, которые включают в себя такие:

Повышенная восприимчивость к инфекциям;

Незначительное снижение роста;

Повышенный риск получения теплового удара или гипотермии;

Кости легче ломаются;

Сутулость;

Замедленное движение;

Снижение общей энергии;

Запор и недержание мочи;

Незначительное замедление процесса мышления и ухудшение памяти;

Снижение координации;

Ухудшение остроты зрения и уменьшение периферического зрения;

Потеря слуха;

Провисание и сморщивание кожи;

Поседение волос;

Влияние сахара

Людям, которые любят сладкое, будет неприятно узнать, что сахар «ускоряет» нашу старость. Если вы потребляете его в большом количестве, то в скором времени быстро наберете вес, а ваше тело станет более восприимчивым к хроническим заболеваниям. Они, конечно же, будут медленно «внедряться» в жизнь человека в течение длительного времени. Однако каждое хроническое заболевание негативно влияет на все клетки в организме. Что и становится причиной того, почему человек медленно стареет.

Курение

Даже ребенку известно, что курение вредно для здоровья. В Новой Зеландии, например, ежегодно умирает 5 000 человек из-за неблагоприятных последствий курения (в том числе и пассивного). Это 13 человек в день!

Каждая выкуренная сигарета будет прибавлять морщины на вашем лице. А в сочетании с большим количеством солнечного света еще и способствовать появлению отмирающих клеток на коже.

Развод

Да, вы не ошиблись! Разрыв с тем, кого вы сильно любили, безусловно, оказывает негативное воздействие не только на ваше психологическое состояние, но и на внешность и здоровье.

В 2009 году ученые провели исследования с идентичными близнецами, в результате которых выяснилось, что разлученные пары выглядят намного старше, чем те, которые всегда были вместе.

Воздействие солнца

Солнечные лучи положительно влияют на организм человека, но до определенной степени. Они могут стать причиной появления морщин на коже, тогда станет понятно, почему одни люди стареют быстрее других.

Избыток солнца может привести к эластозу (снижению эластичности кожи) и к появлению многочисленных пигментных пятен на лице.

Фобии и стрессы

В недавних исследованиях было установлено, что личные фобии и переживания ускоряют старение и прибавляют несколько лет к вашему внешнему виду. Хронический стресс приводит к постоянному высвобождению которые оказывают негативное воздействие на внутренние органы и ткани. А также способствуют образованию свободных радикалов, что и становятся причиной того, почему люди быстро стареют.

Как замедлить биологические часы

1. Научитесь управлять своими страхами и справляться с переживаниями.

2. Ограничение потребления калорий существенно замедляет вашу старость. Предварительные результаты исследований на обезьянах показали, что рациональные диеты могут «притормозить» возрастные физиологические изменения.

3. Регулярно делайте физические упражнения. Ведь именно они способствуют выделению гормонов роста.

4. Старайтесь каждый день высыпаться. Только во время сна мы можем полностью восстановить все свои силы.

5. Расслабляйтесь. Выберите подходящий для вас способ релаксации. Возможно, это будут танцы, чтение книг, слушание музыки или просто приемы горячих ванн.

И в заключение можно сказать, что все мы будем стареть, нравится нам это или нет. Но мы теперь знаем, как замедлить этот процесс, даже на клеточном уровне. Нужно не только вести здоровый образ жизни, но и свести к минимуму все факторы, которые негативно влияют на наш организм.


Старение клеток (cell senescence) является событием, которое происходит во всех нормальных клетках in vitro (доля таких клеток в организме невелика). Клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Они прекращают делиться и в конце концов умирают. В соответствии с этим ожидаемая продолжительность жизни в установленной культуре клеток зависит от возраста донора. Клетки, приобретшие бессмертие, через кризисный период трансформации за счет воздействия химических веществ или вирусов, точно так же, как линии злокачественных клеток в целом, обладают способностью делиться неопределенно долго. Другая форма клеточной смерти, или программируемая клеточная смерть, происходит во многих физиологических ситуациях, например, при дифференцировке кератиноцитов.

Наука о старении клеток называется цитогеронтология. Продолжительность жизни нормальных диплоидных клеток в культуре ограничена, находится под генетическим контролем и ее можно модифицировать(гормонами, факторами роста и др.).

Большинство клеток млекопитающих при помещении в культуру претерпевают ограниченное число клеточных делений перед тем, как переходят в нечувствительное непролиферирующе состояние, называемое старением. Однако, несколько путей, которые активируются по одиночке или совместно могут помочь клеткам обойти старение по крайней мере на ограниченные периоды времени. Они включают теломеразный путь, требующийся для поддержания теломерных концов, и пути p53 и Rb, требующиеся для направления старения в ответ на повреждения ДНК, сокращение теломер и митогенные сигналы, и путь инсулиноподобного ростового фактора, который может регулировать продолжительность жизни и клеточную пролиферацию. Для борьбы с клеточным старением теломеразу необходимо реактивировать, а p53 и Rb подавлять. Эмбриональные бессмертны, потому что эти пути в них строго регулируются.

Таким образом, клетки, растущие в культуре, имеют ограниченную продолжительность жизни и не растут после определенного числа делений. Продолжительность жизни нормальных диплоидных клеток в культуре находится под генетическим контролем и ее можно модифицировать(гормонами, факторами роста и др.).

Стареющие клетки могут длительно сохранять жизнеспособность. Это показывает, что процесс старения четко отличается от любой формы смерти клеток, например апоптоза, и что эти состояния необходимо различать. Старение обнаружено у многих типов клеток человека и других млекопитающих. Эти данные (см. обзор Cristofalo, ea 1993) показывают, что старение является общим феноменом. Наблюдения, свидетельствующие, что фенотип старения доминирует над иммортализованным фенотипом (Bunn, ea 1980 , Muggleton-Harris, ea 1980 , Pereira-Smith, ea 1981 , Pereira-Smith, ea 1983), многими авторами интерпретировались в том смысле, что ограниченная продолжительность жизни нормальных клеток является генетически запрограммированным процессом и что иммортализованные клетки теряют функцию одного или более предполагаемых генов старения, которые активны в нормальных клетках.

Подробнее о репликативном старении клеток можно прочитать в

Старение клетки- старение организма?

Все клетки организма продуцируют специфические вещества- , с помощью которых передается сигнал, запускается пролиферация, дифференцировка, апоптоз и др. Особенное значение этому придает тот факт, что некоторые клетки- фибробласты-расположены по всему организму, окружают многие клетки. Вполне возможно, что возрастные изменения в синтезе и ответе этих клеток на различные цитокины приводят к старению других клеток организма. А так как эти клетки повсюду, то стареет весь организм. Об этом свидетельствует работа Jeyapalan JC и Sedivy JM из Department of Molecular Biology, Cell Biology and Biochemistry, Brown University . В августе этого года вышла их статья "Старение клеток и старение организма" .
Клеточное старение (senescence) впервые было обнаружено в культурах клеток и представляет собой необратимую остановку клеточного цикла,
запускаемую различными факторами. Существуют доказательства того, что старение- это некий экстренный механизм для защиты от образования опухоли-клетка стареет и не может делиться, а опухолевые клетки, как известно, характеризуются безконтрольным ростом и делением. Но также известно, что старение клеток может приводить к опухолевому процессу и вносит свой вклад в старение всего организма. Накопление стареющих клеток приводит к старению организма вцелом. Многие клетки модифицируют свое окружение, а окружение влияет на другие клетки. При старении этих клеток, в основном фибробластов, изменяется и окружение других клеток, что может приводить к их старению.

Возраст-зависимые мутации мтДНК и клеточное старение

Мутации митохондриальной ДНК (мтДНК)- одна из причин возраст-зависимого разрушения клеток, вызываемая в свою очередь действием (АФК). Но не для всех этих мутаций доказано значение для клеточного старения. Ученые из Университета Ньюкасла под руководством профессора Mark Birch-Machin занимаются исследованием фенотипического значения мутации T414G (замена T на G в 414 положении) внутри контрольного региона мтДНК, наличие которой показано в стареющей (в том числе и при фотостарении) коже (). Исследователи продемонстрировали, что в течении деления фибробласта кожи in vitro в 5 различных культурах клеток, выделенных у пожилых людей, груз мутации T414G может увеличиваться или уменьшаться при клеточном делении, что свидетельствует об отсутствии направленного отбора против этой мутации. В подтверждение этого, с помощью клеточного сортера было показано, что уровень мутации T414G прямо не коррелирует со снижением или повышением числа копий мтДНК, или с маркерами клеточного старения (накопление липофусцина, продукция АФК). По видимому, распределение мутации косвенно зависит от типа клеточной линии. Ученые пришли к выводу, что эта мутация имеет небольшое влияние на продукцию АФК и клеточное старение в культуре фибробластов.
Подобные исследования причин и звеньев патогенеза клеточного старения имеют большое значение для разработки методов борьбы со старением.

Старение эндотелиальных прогениторных клеток

Фактор роста гепатоцитов (hepatocyte growth factor (HGF)) и сосудистый эндотелиальный фактор роста (vascular endothelial growth factor (VEGF)) -потенциально ангиогенные факторы роста в животных моделях ишемии , но их характеристики не одинаковы в лабораторных и клинических исследованиях. Японские ученые, в том числе знаменитый профессор Ryuichi Morishita из Университета Осаки, поставили целью своего исследования изучить действие этих ростовых факторов на эндотелиальные прогениторные клетки с помощью стимуляции ангиотензином II, который известен как фактор риска развития атеросклероза (). В результате исследования было выяснено, что HGF, но не VEGF, смягчает ангиотензин II-индуцированное старение эндотелиальных прогениторных клеток через снижение , ингибируя фосфатидилинозитол-трифосфат/rac1 путь. Мощная индукция неоваскуляризации HGF, но не VEGF, с помощью ангеотензина II была подтверждена экспериментами in vivo с использованием различных моделей, в том числе и трансгенных по HGF мышей.
Исследование причин, механизмов и факторов, противодействующих клеточному старению, с использованием различных подходов помогает геронтологам и ученым других специальностей искать средства для борьбы с процессом старения.

p53

Белок контролирует правильность выполнения генетических программ организма- он участвует в развитии ответа на стресс, может инициировать репарацию ДНК, остановку клеточного цикла, клеточное старение, а, прежде всего, - . До сих пор невыяснено каким именно образом p53 влияет на процесс старения- через запуск апоптоза, через остановку репарации и регенерации, или через все вышеупомянутые механизмы. Исследования на мышах дают разные, часто противоречивые результаты. Но одно несомненно- клеточное старение и старение организма в целом связаны с функционированием p53 . Этому посвящена статья ученых из The Institute for Advanced Study, Princeton Vazquez A , Bond EE, Levine AJ и Bond GL "Генетика сигнального пути p53, апоптоз и терапия рака" .
Ответ на стресс определяет индивидуальные возможности формирования опухоли и ответ на различные типы терапии онкологических заболеваний. Ученые занимаются оптимизацией терапии в соответствии современному уровню знаний. Для этого они провели генетическое исследование компонентов сигнального пути p53- самого p53 и его негативного регулятора MDM2, который может стать мишенью для терапии. Кроме того, унаследованные однонуклеотидные полиморфизмы генов сигнального пути p53 могут приводить к сходным результатам.
Из всего вышесказанного следует очень важный вывод: исследование влияния p53 на клеточное старение и запуск апоптоза помогают в разработке и оптимизации борьбы с онкологическими заболеваниями, большая часть которых является спутниками старости.

Старение клеток мезотелия

Группа польских ученых из Медицинского Университета Познани , в том числе и профессор Университета Ньюкасла исследовала уязвимость для и различные типы старения человеческих перитонеальных мезотелиальных клеток (). Выделенная из асцитической жидкости линия клеток LP-9 и выделенная из сальника линия мезотелиальных клеток HOMCs широко используются в различных исследованиях. Предполагается, что in vitro они обладают разным репликативным потенциалом. Исследователи решили сравнить эти клеточные линии с целью выявления конкретных механизмов клеточного старения . Обнаружено, что HOMCs делится меньше и вступает в фазу старения раньше, чем LP-9. Этот эффект был подтвержден ранним повышением уровня бэта-галактозидазы, ассоциированной со старением, и ингибиторов клеточного цикла p16(INK4A) и p21(WAF1). Кроме того, все 3 раза, когда клетки пересевали наблюдалось увеличение уровня повреждения ДНК. В отличие от LP-9, у HOMCs области повреждения локализовались в основном вне и длина теломер уменьшалась незначительно в процессе старения клеток. По сравнению с клетками LP-9, HOMCs входит в фазу старения с гораздо меньшим уровнем липофусцина и повреждения ДНК, а также с характерным низким уровнем восстановленного глутатиона. Кроме того, HOMCs синтезирует гораздо больше активных форм кислорода спонтанно или в ответ на внешние оксиданты. Результаты говорят о том, что в отличие от LP-9, HOMCs подвергается стресс-индуцированному теломеро-независимому преждевременному старению, что может быть следствием сильной уязвимости для .
Это исследование наглядно показывает, что разные клетки стареют по-разному.

Старение Т-клеток у приматов


В результате ряда исследований обнаружены серьезные возрастные изменения функционирования Т-лимфоцитов. В то время как общее количество Т-клеток в периферической крови в старости заметно не изменяется, наблюдаются четкие различия в относительном количестве подтипов Т-клеток. Количество незрелых лимфоцитов Т-предшественников увеличивается с возрастом, так же как и процент частично активированных Т-лимфоцитов, несущих маркеры незрелого фенотипа тимуса . Имеет место относительное увеличение цитотоксических супрессорных Т-клеток и уменьшение количества хелперов/индукторов Т-клеток. Функциональные дефекты клеточно-опосредованного иммунитета коррелируют с уменьшением популяции хелперов/индукторов. Клетки, полученные от старых людей или лабораторных животных, менее способны к ответу на аллогенные лимфоциты, фитогемагглютинин, конканавалин А и растворимый антиген. Лимфоциты от более старых мышей обладают меньшей способностью вызывать реакции отторжения, чем те, которые получены от более молодых особей тех же инбредных линий. Половина здоровых людей в возрасте старше 50 лет страдают кожной гиперчувствительностью. Уменьшение количества хелперов/индукторов Т-клеток и функций клеточно-опосредованного иммунитета сопровождается ростом количества антител и аутоиммунных реакций.

Онковирусы и арест клеточного цикла

Другой вариант старения клеток иммунной системы связан с инфицированием онковирусами . Инфицирование человеческим Т-лимфотропным вирусом типа1 (HTLV-1) вызывает дисрегуляцию пролиферации Т-лимфоцитов, что приводит к Т-клеточной лимфоме. Ранние клеточные изменения после инфицирования HTLV-1 трудно исследовать, т.к. для передачи вируса нужен межклеточный контакт, а в культуре клетки мало контактируют друг с другом. В Департаменте Микробиологии и Иммунологии Uniformed Services University of the Health Sciences ученые под руководством профессора Chou-Zen Giam провели исследования, в ходе которых показано, что клетки линии HeLa прекращают пролиферацию через 1-2 деления после инфицирования HTLV-1 или встраивания вирусного гена tax (). Клетки HeLa, инфицированные вирусом, как и клетки с встроенным tax, характеризуются высоким уровнем экспрессии p21(CIP1/WAF1) и p27(KIP1), митотическими аномалиями, останавливаются в G1-фазе клеточного цикла и стареют. Для сравнения, клетки человеческой остеосаркомы (HOS) продолжают делиться, хотя и с уменьшением скорости роста и отклонениями митоза. В клетках HOS значительно снижается экспрессия p21 и p27, которые ассоциированы с активацией пути фосфатидилинозитол-3-протеинкиназы (PI3K). Снижение p21(CIP1/WAF1) и p27(KIP1) в HOS вероятно позволяет произойти индуцированному вирусом или его геном аресту. Наконец, инфицирование HTLV-1 и экспрессия Tax вызывает арест в G1-фазе и клеток другой линии- Т-лимфоцитов SupT1. Отсюда вывод: инфицирование HTLV-1 приводит к вызываемому tax аресту клеточного цикла. Кроме того, Т-клетки, содержащие мутации по p21(CIP1/WAF1) и p27(KIP1) могут продолжать пролиферировать после инфицирования. Эти инфицированные клетки могут
размножаться, накапливать хромосомные аберрации и прогрессировать, приводя к раку.

Инсулиноподобный фактор роста (ИФР) и клеточное старение

С возрастом у людей возникают проблемы с опорно-двигательным аппаратом, в том числе и из-за патологических изменений в межпозвоночных дисках. У пожилых людей в дисках много стареющих клеток . Стареющие клетки не могут делиться и это снижает способность ткани диска к обновлению, чтобы заменить клетки погибшие некрозом или апоптозом . Ученые из Carolinas Medical Center, Charlotte под руководством Эдварда Хенли (Edward Hanley) провели работу по исследованию старения клеток межпозвоночных дисков и методов воздействия на него (). Целями данного исследования были:
1) создание надежной лабораторной модели стресс-индуцированного
преждевременного старения человеческих клеток межпозвоночных дисков;
2) определить потенциал ИФР1 в качестве средства против клеточного старения in vitro.
Инсулиноподобный фактор роста 1 (ИФР1) опосредует эффекты соматотропного гормона (СТГ). ИФР1 производится гепатоцитами печени в ответ на стимуляцию их соматотропиновых рецепторов. В периферических тканях именно ИФР-1 обеспечивает практически все физиологические эффекты соматотропного гормона.
Для создания модели использовали 2-часовую обработку перекисью водорода, затем с помощью иммуноцитохимических методов определяли локализацию стареющих клеток по бета-галактозидазе, процентное содержание стареющих клеток в культуре оценивали после 3 дней культивирования. Было создано 9 культур из хирургического
материала от 8 пациентов, клетки которых тестировались ИФР1 с
концентрацией 0, 50, 100 и 500 нг/мл. ИФР с концентрацией 50 и 100 нг/мл слабо незначительно на процент стареющих клеток, значительное снижение процента стареющих клеток наблюдалось при обработке ИФР с концентрацией 500 нг/мл. Эти данные являются этапом разработки терапевтичеких средств для борьбы с клеточным старением, в том числе и клеток межпозвоночных дисков.

Ресвератрол и лечение глаукомы

Ресвератрол- это фитоалексин (антибиотик, вырабатываемый в растениях, подвергшихся заражению). Он вырабатывается во многих растениях в ответ на действие бактериальных патогенов и патогенов грибов. Сейчас его получают искусственно и используют как пищевую добавку. Было показано, что он увеличивает продолжительность жизни у экспериментальных организмов- дрожжей и мышей.
Paloma Liton , Pedro Gonzalez , David L. Epstein , а также сотрудники их лабораторий из DUKE EYE CENTER Duke University Medical Center провели исследование эффекта ресвератрола при лечении глаукомы .
Повышенное внутриглазное давление (intraocular pressure (IOP)) является главным фактором риска для возникновения открытоуголной глаукомы (primary open-angle glaucoma (POAG)), которая составляет более 90% случаев глаукомы-тяжелого возраст-ассоциированного заболевания глаз. Высокое внутриглазное давление возникает из-за снижения оттока внутриглазной жидкости через систему трабекул (TM) Шлеммова канала. Снижение функции ТМ при POAG ассоциированна с экспрессией маркеров воспаления, старением клеток, и снижением клеточности. В настоящее время лечние глаукомы заключается в снижении давления, но этот терапевтический подход не улучшает функционирование ТМ у больных глаукомой. Ученые провели исследования действия ресвератрола на экспрессию маркеров воспаления, оксидативное повреждение и старения клеток ТМ, подтвергающихся хроническому оксидативному стрессу. Ресвератрол снижает продукцию внутри клеток и маркеров воспаления (IL1alpha, IL6, IL8 и ELAM-1), а также маркеров старения (бэта-галактозидазы, липофусцина и ). Также ресвератрол обладает антиапоптотическим действием, не ассоциированным со снижением клеточной пролиферации. Был сделан вывод, что ресвератрол предотвращает аномалии клеток ТМ у больных глаукомой.

В заключение

Процесс клеточного старения многообразен. Он запускается различными факторами, идет через разные сигнальные пути. В разных клетках процесс старения различен, наступает в разные моменты времени. Но во в любом случае приводит к дисфункции и смерти клетки. При рассмотрении клеточного старения возникает несколько вопросов, которые мы частично попытались рассмотреть:
1) Насколько клеточное старение соответствует старению организма в целом?
2) Как происходит старение разных клеточных типов?
3) Чем отличается старение клеток в организме (in vivo) и в лабораторных условиях (in vitro)?
4) Как старение клеток влияет на функцию клеток?
5) Как можно повлиять на процесс клеточного старения?
6) Каковы перспективы использования регуляции клеточного старения в терапии возраст-ассоциированных заболеваний?
Ответы на эти и другие вопросы очень важны для разработки средств борьбы со старением. Это один из фундаментальных механизмов, лежащих в основе старения человека.

Статья на конкурс «био/мол/текст»: Уже более 50 лет прошло с тех пор, как на культуре фибробластов доказан феномен старения клеток, но существование старых клеток в организме долгое время подвергалось сомнению. Не было доказательств, что старение отдельных клеток играет важную роль в старении всего организма . В последние годы были открыты молекулярные механизмы старения клеток, их связь с онкологическими заболеваниями и воспалением. По современным представлениям, воспаление играет ведущую роль в генезе практически всех возраст-зависимых заболеваний, которые в конечном итоге приводят организм к смертельному исходу. Оказалось, что старые клетки, с одной стороны, выступают в качестве супрессоров опухолей (поскольку необратимо перестают делиться сами и снижают риск трансформации окружающих клеток), а с другой - специфический метаболизм старых клеток может вызывать воспаление и перерождение соседних предраковых клеток в злокачественные. В настоящее время проходят клинические испытания лекарственных препаратов, избирательно элиминирующих старые клетки в органах и тканях, тем самым предотвращая дегенеративные изменения органов и рак.

В организме человека присутствует примерно 300 типов клеток, и все они делятся на две большие группы: одни могут делиться и размножаться (то есть, они митотически компетентны ), а другие - постмитотические - не делятся: это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

В нашем организме существуют обновляющиеся ткани, в которых есть пул постоянно делящихся клеток, которые заменяют отработанные или погибающие клетки. Такие клетки есть в криптах кишечника, в базальном слое эпителия кожи, в костном мозге (кроветворные клетки). Обновление клеток может происходить довольно интенсивно: так, клетки соединительной ткани в поджелудочной железе заменяются каждые 24 часа, клетки слизистой желудка - каждые три дня, лейкоциты - каждые 10 дней, клетки кожи - каждые шесть недель, примерно 70 г пролиферирующих клеток тонкого кишечника удаляется из организма ежедневно .

Стволовые клетки, существующие практически во всех органах и тканях, способны делиться неограниченно. Регенерация тканей происходит за счет пролиферации стволовых клеток, которые могут не только делиться, но и дифференцироваться в клетки той ткани, регенерация которой происходит. Стволовые клетки есть в миокарде, в головном мозге (в гипокампе и в обонятельных луковицах) и в других тканях. Это открывает большие надежды в плане лечения нейродегенеративных заболеваний и инфаркта миокарда .

Постоянно обновляющиеся ткани способствуют увеличению продолжительности жизни. При делении клеток происходит омоложение тканей: новые клетки приходят на место поврежденных, при этом интенсивнее происходит репарация (устранение повреждений ДНК) и возможна регенерация при повреждении тканей. Не удивительно, что у позвоночных значительно выше продолжительность жизни, чем у беспозвоночных - тех же насекомых, у которых во взрослом состоянии клетки не делятся.

Но в то же время обновляющиеся ткани подвержены гиперпролиферации, что ведет к образованию опухолей, в том числе - злокачественных. Это происходит из-за нарушений регуляции деления клеток и повышенной частоты мутагенеза в активно делящихся клетках. По современным представлениям, чтобы клетка приобрела свойство злокачественности, ей необходимо 4–6 мутаций . Мутации возникают редко, и для того, чтобы клетка стала раковой - это подсчитано для фибробластов человека - должно произойти около 100 делений (такое число делений обычно происходит у человека примерно в возрасте 40 лет) .

Стоит, в прочем, помнить, что мутация мутации рознь, и согласно новейшим геномным исследованиям в каждом поколении человек приобретает около 60 новых мутаций (которых не было в ДНК у его родителей). Очевидно, что большая часть из них вполне нейтральная (см. «Перевалило за тысячу: третья фаза геномики человека »). - Ред.

В целях защиты от самого себя, в организме сформировались специальные клеточные механизмы супрессии опухолей . Один из них - репликативное старение клеток (сенесценция ), заключающееся в необратимой остановке деления клетки в стадии G1 клеточного цикла . При старении клетка перестает делиться: она не реагирует на ростовые факторы и становится устойчивой к апоптозу.

Лимит Хейфлика

Феномен старения клеток был впервые открыт в 1961 г. Леонардом Хейфликом с коллегами на культуре фибробластов. Оказалось, что клетки в культуре фибробластов человека при хороших условиях живут ограниченное время и способны удваиваться примерно 50±10 раз, - и это число стали называть лимитом Хейфлика , . До открытия Хейфлика господствовала точка зрения, что клетки бессмертны, а старение и смерть - это свойство организма в целом.

Эта концепция считалась неопровержимой во многом благодаря экспериментам Карреля, который поддерживал культуру клеток сердца цыпленка 34 года (ее выбросили лишь после его смерти). Однако, как выяснилось впоследствии, бессмертие культуры Карреля было артефактом, поскольку вместе с эмбриональной сывороткой, которая добавлялась в культуральную среду для роста клеток, туда попадали и сами эмбриональные клетки (и, скорее всего, культура Карреля стала уже далеко не тем, чем была в начале).

По-настоящему бессмертными являются раковые клетки. Так, клетки HeLa , выделенные в 1951 г. из опухоли шейки матки Генриетты Лакс , до сих пор используются цитологами (в частности, c помощью клеток HeLa была разработана вакцина против полиомиелита). Эти клетки даже побывали в космосе.

О захватывающей истории бессмертия Генриетты Лакс см. в статье «Бессмертные клетки Генриетты Лакс », а также «Наследники клеток HeLa ». - Ред.

Как выяснилось, лимит Хейфлика зависит от возраста: чем старше человек, тем меньшее число раз удваиваются его клетки в культуре. Интересно, что замороженные клетки при разморозке и последующем культивировании как будто помнят число делений до замораживания. Фактически, внутри клетки существует «счетчик делений», и по достижении определенного предела (лимита Хейфлика) клетка перестает делиться - становится сенесцентной. Сенесцентные (старые) клетки имеют специфическую морфологию - они крупные, уплощенные, с большими ядрами, сильно вакуолизированы, у них меняется профиль экспрессии генов. В большинстве случаев они устойчивы к апоптозу.

Однако старение организма нельзя свести только к старению клеток. Это значительно более сложный процесс. Старые клетки есть и в молодом организме, но их мало! Когда же с возрастом сенесцентные клетки накапливаются в тканях, начинаются дегенеративные процессы, которые приводят к возраст-зависимым заболеваниям. Один из факторов этих заболеваний - так называемое старческое «стерильное» воспаление , которое связано с экспрессией провоспалительных цитокинов старыми клетками.

Еще один важный фактор биологического старения - строение хромосом и их кончиков - теломеров.

Теломерная теория старения

Рисунок 1. Теломеры - концевые участки хромосом. Поскольку хромосом у человека 23 пары (то есть, 46 штук), теломер получается 92.

В 1971 году наш соотечественник Алексей Матвеевич Оловников предположил, что лимит Хейфлика связан с «недорепликацией» концевых участков линейных хромосом (они имеют специальное название - теломеры ). Дело в том, что в каждом цикле деления клетки теломеры укорачиваются из-за неспособности ДНК-полимеразы синтезировать копию ДНК с самого кончика , . Кроме того, Оловников предсказал существование теломеразы (фермента, добавляющего повторяющиеся последовательности ДНК на концы хромосом), исходя из того факта, что иначе в активно делящихся клетках ДНК быстро бы «съелась», и генетический материал был бы утерян. (Проблема в том, что активность теломеразы угасает в большинстве дифференцированных клеток.)

Теломеры (рис. 1) играют важную роль: они стабилизируют кончики хромосом, которые иначе, как говорят цитогенетики, стали бы «липкими», т.е. подверженными разнообразным хромосомным аберрациям, что приводит к деградации генетического материала. Теломеры состоят из повторяющихся (1000–2000 раз) последовательностей (5′-TTAGGG-3′), что в сумме дает 10–15 тысяч нуклеотидных пар на каждый хромосомный кончик. На 3′-конце теломеры имеют довольно длинный однонитевой участок ДНК (150–200 нуклеотидов), участвующий в образовании петли по типу лассо , (рис. 2). С теломерами связано несколько белков, образующих защитный «колпачок» - этот комплекс называется шелтерином (рис. 3). Шелтерин предохраняет теломеры от действия нуклеаз и слипания и, видимо, именно он сохраняет целостность хромосомы.

Рисунок 2. Состав и структура теломер. Многократное деление клетки в случае отсутствия активности теломеразы ведет к укорочению теломер и репликативному старению .

Рисунок 3. Строение теломерного комплекса (шелтерина ). Теломеры находятся на концах хромосом и состоят из тандемных повторов TTAGGG, которые заканчиваются 32-членным выступающим одноцепочечным фрагментом. С теломерной ДНК связан шелтерин - комплекс из шести белков: TRF1, TRF2, RAP1, TIN2, TPP1 и POT1.

Незащищенные концы хромосом воспринимаются клеткой как повреждение генетического материала, что активирует репарацию ДНК . Теломерный комплекс вместе с шелтерином «стабилизирует» хромосомные кончики, защищая всю хромосому от разрушения. В сенесцентных клетках критическое укорочение теломер нарушает эту защитную функцию , в связи с чем начинают формироваться хромосомные аберрации, которые часто приводят к малигнизации. Чтобы этого не произошло, специальные молекулярные механизмы блокируют клеточное деление, и клетка переходит в состояние сенесцентности - необратимой остановки клеточного цикла. При этом клетка гарантированно не может размножаться, а значит, не сможет и сформировать опухоль. В клетках с нарушенной способностью к сенесценции (которые размножаются, несмотря на дисфункцию теломер), образуются хромосомные аберрации.

Длина теломер и скорость их укорочения зависит от возраста. У человека длина теломер варьирует от 15 тысяч нуклеотидных пар (т.н.п.) при рождении до 5 т.н.п. при хронических заболеваниях. Длина теломер максимальна у 18-месячных детей, а затем она быстро снижается до 12 т.н.п. к пятилетнему возрасту. После этого скорость укорачивания снижается .

Теломеры укорачиваются у разных людей с разной скоростью. Так, на эту скорость сильно влияют стрессы. Э. Блекберн (лауреат Нобелевской премии по физиологии и медицине 2009 г.) установлено, что женщины, постоянно испытывающие стресс (например, матери хронически больных детей), имеют значительно более короткие теломеры по сравнению со сверстницами (примерно на десять лет!). Лабораторией Э. Блекберн разработан коммерческий тест для определения «биологического возраста» людей на основании длины теломер.

Любопытно, что у мышей очень длинные теломеры (50–40 т.н.п., по сравнению с 10–15 т.н.п. у человека). У некоторых линий лабораторных мышей длина теломер достигает 150 т.н.п. Более того, у мышей теломераза всегда активна, что не дает теломерам укорачиваться. Однако это, как всем известно, не делает мышей бессмертными. Мало того: у них опухоли развиваются намного чаще, чем у людей, что позволяет предположить, что укорачивание теломер как механизм защиты от опухолей у мышей не работает .

При сравнении длины теломер и теломеразной активности у разных млекопитающих оказалось, что виды, для которых характерно репликативное старение клеток, имеют большую продолжительность жизни и большой вес. Это, например, киты, продолжительность жизни которых может достигать 200 лет. Таким организмам репликативное старение просто необходимо, поскольку слишком большое число делений порождает множество мутаций, с которыми необходимо как-то бороться. Предположительно, репликативное старение и есть такой механизм борьбы, который сопровождается к тому же репрессией теломеразы .

Старение диференцированных клеток происходит иначе. Стареют и нейроны, и кардиомиоциты, а ведь они не делятся! Например, в них накапливается липофусцин - старческий пигмент, который нарушает функционирование клеток и запускает апоптоз. В клетках печени и селезенки с возрастом накапливается жир.

Связь репликативного старения клеток со старением организма, строго говоря, не доказана, но возрастная патология сопровождается и старением клеток (рис. 4). Злокачественные новообразования пожилого возраста в большинстве своем связаны с обновляемыми тканями. Онкологические заболевания в развитых странах - одна из основных причин заболеваемости и смертности, причем независимым фактором риска раковых заболеваний является просто... возраст. Число смертей от опухолевых заболеваний увеличивается с возрастом по экспоненте, так же как и общая смертность. Это говорит нам, что между старением и канцерогенезом существует фундаментальная связь.

Рисунок 4. Гистохимически окрашенные на наличие β-галактозидазной активности фибробласты человека линии WI-38. A - молодые; B - старые (сенесцентные).

Теломераза - фермент, который был предсказан

В организме должен существовать механизм, компенсирующий укорочение теломер, - такое предположение сделал А.М. Оловников . Действительно, в 1984 г. такой фермент был открыт Кэрол Грейдер и назван теломеразой . Теломераза (рис. 5) - это обратная транскриптаза, которая увеличивает длину теломер, компенсируя их недорепликацию. В 2009 году Э. Блэкберн, К. Грэйдер и Д. Шостак за открытие этого фермента и цикл работ по изучению теломер и теломеразы была присуждена Нобелевская премия (см: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе » ).

Рисунок 5. Теломераза содержит каталитический компонент (обратную транскриптазу ТERT), теломеразную РНК (hTR или TERC), содержащую две копии теломерного повтора и являющуюся матрицей для синтеза теломеров, и белок дискерин.

По данным Э. Блекберн, теломераза участвует в регуляции активности примерно 70 генов. Теломераза активна в зародышевых и эмбриональных тканях, в стволовых и пролиферирующих клетках. Ее обнаруживают в 90% раковых опухолей, что обеспечивает неудержимое размножение раковых клеток. В настоящее время среди препаратов, которые используют для лечения рака, есть и ингибитор теломеразы. Но в большинстве соматических клеток взрослого организма теломераза не активна.

В состояние сенесценции клетку могут привести многие стимулы - дисфункция теломер, повреждения ДНК, причиной которых могут быть мутагенные воздействия окружающей среды, эндогенные процессы, сильные митогенные сигналы (сверхэкспрессия онкогенов Ras, Raf, Mek, Mos, E2F-1 и др.), нарушения хроматина, стрессы и др. Фактически, клетки перестают делиться - становятся сенесцентными - в ответ на потенциально вызывающие рак события.

Страж генома

Дисфункция теломер, которая происходит при их укорачивании либо нарушении работы шелтерина, активирует белок р53 . Этот транскрипционный фактор приводит клетку в состояние сенесценции, либо вызывает апоптоз . При отсутствии р53 развивается нестабильность хромосом, характерная для карцином человека. Мутации в белке р53 обнаруживаются в 50% аденокарцином груди и в 40–60% случаев колоректальной аденокарциномы. Поэтому p53 зачастую называют «стражем генома».

Теломераза реактивируется в большинстве опухолей эпителиального происхождения, которые характерны для пожилых людей. Считается, что реактивация теломеразы - важный этап злокачественных процессов, поскольку это позволяет раковым клеткам «не обращать внимания» на лимит Хейфлика. Дисфункция теломер способствует хромосомным слияниям и аберрациям, что в отсутствии p53 чаще всего приводит к злокачественным новообразованиям.

О молекулярных механизмах старения клеток

Рисунок 6. Схема клеточного цикла. Клеточный цикл подразделяют на четыре стадии: 1. G1 (предсинтетическая) - период, когда клетка готовится к репликации ДНК. В этой стадии может произойти остановка клеточного цикла в случае обнаружения повреждений ДНК (на время репарации). Если обнаруживаются ошибки в репликации ДНК, и они не могут быть исправлены репарацией, клетка не переходит на стадию S. 2. S (cинтетическая) - когда происходит репликация ДНК. 3. G2 (постсинтетическая) - подготовка клетки к митозу, когда происходит проверка точности репликации ДНК; если обнаружены недореплицированные фрагменты или другие нарушения в синтезе, переход на следующую стадию (митоз) не происходит. 4. М (митоз) - формирование клеточного веретена, сегрегация (расхождение хромосом) и формирование двух дочерних клеток (собственно деление).

Чтобы были понятны молекулярные механизмы перехода клетки в состояние сенесцентности, я напомню вам, как происходит деление клетки.

Процесс размножения клеток называют пролиферацией . Время существования клетки от деления до деления именуют клеточным циклом . Процесс пролиферации регулируется как самой клеткой - аутокринными ростовыми факторами, - так и ее микроокружением - паракринными сигналами.

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы - это в основном ростовые факторы и межклеточные контактные сигналы. Ростовые факторы обычно имеют пептидную природу (к настоящему времени их известно около 100). Это, например, фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран, эпителиальный фактор роста, различные цитокины - интерлейкины, фактор некроза опухолей, колониестимулирующие факторы и т.д. После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл (рис. 6).

Клеточный цикл регулируется циклин-зависимыми киназами , разными для каждой стадии клеточного цикла. Они активируются циклинами и инактивируются рядом ингибиторов. Цель такой сложной регуляции - обеспечить синтез ДНК с как можно меньшим числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал. Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» цикла: если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК . Если нарушения структуры ДНК удается исправить - клеточный цикл продолжается. Если нет - клетке лучше «покончить с собой» (путем апоптоза), чтобы избежать вероятности превращения в раковую.

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами опухолей, среди которых p53 и pRB, связанные с ингибиторами циклин-зависимых киназ. Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21. Транскрипционный фактор р53 активируется при повреждениях ДНК, и функция его заключается в удалении из пула реплицирующихся клеток тех, которые являются потенциально онкогенными (отсюда и прозвище р53 - «страж генома»). Данное представление подтверждается тем фактом, что мутации р53 обнаруживают в ~50% случаев злокачественных опохолей. Другое проявление активности р53 связано с апоптозом наиболее поврежденных клеток.

Сенесценция клеток и возраст-зависимые заболевания

Рисунок 7. Взаимосвязь между старением клеток и старением организма.

Сенесцентные клетки накапливаются с возрастом и способствуют возрастным заболеваниям. Они снижают пролиферативный потенциал ткани и истощают пул стволовых клеток, что приводит к дегенеративным нарушениям ткани и снижает способность к регенерации и обновлению.

Сенесцентные клетки характеризуются специфической экспрессией генов: они секретируют воспалительные цитокины и металлопротеиназы, разрушающие межклеточный матрикс. Получается, что старые клетки обеспечивают вялотекущее старческое воспаление, а накопление старых фибробластов в коже служит причиной возрастного снижения способности к заживлению ран (рис. 7). Старые клетки также стимулируют пролиферацию и малигнизацию близлежащих предраковых клеток, благодаря секреции эпителиального фактора роста .

Сенесцентные клетки накапливаются во многих тканях человека, присутствуют в атеросклеротических бляшках, в язвах кожи, в пораженных артритом суставах, а также в доброкачественных и пренеопластических гиперпролиферативных поражениях простаты и печени. При облучении раковых опухолей некоторые клетки также переходят в состояние сенесценции, тем самым обеспечивая рецидивы заболевания.

Таким образом, клеточное старение демонстрирует эффект отрицательной плейотропии, суть которого состоит в том, что хорошее для молодого организма, может стать плохим для старого. Самый яркий пример - процессы воспаления. Выраженная реакция воспаления способствует быстрому выздоровлению молодого организма при инфекционных заболеваниях. В пожилом же возрасте активные воспалительные процессы приводят к возрастным заболеваниям. Сейчас принято считать, что воспаление играет определяющую роль практически при всех возраст-зависимых заболеваниях, начиная с нейродегенеративных.

Похожие публикации