Какие частицы называют элементарными. Краткая классификация и свойства частиц

– материальные объекты, которые нельзя разделить на составные части. В соответствии с этим определением к элементарным частицам не могут быть отнесены молекулы, атомы и атомные ядра, которые поддаются делению на составные части – атом делится на ядро и орбитальные электроны, ядро – на нуклоны. В то же время нуклоны, состоящие из более мелких и фундаментальных частиц – кварков, нельзя разделить на эти кварки. Поэтому нуклоны относят к элементарным частицам. Учитывая то обстоятельство, что нуклон и другие адроны имеют сложную внутреннюю структуру, состоящую из более фундаментальных частиц – кварков, более целесообразно адроны называть не элементарными частицами, а просто частицами.
Частицы имеют размеры меньшие, чем атомные ядра. Размеры ядер 10 -13 − 10 -12 см. Наиболее “крупные” частицы (к ним относятся и нуклоны) состоят из кварков (двух или трёх) и называются адронами. Их размеры ≈ 10 -13 см. Существуют также бесструктурные (на современном уровне знаний) точечноподобные (< 10 -17 см) частицы, которые называют фундаментальными. Это кварки, лептоны, фотон и некоторые другие. Всего известно несколько сот частиц. Это в подавляющем большинстве адроны.

Таблица 1

Фундаментальные фермионы

Взаимодействия

Поколения Заряд
Q/e
лептоны ν е ν μ ν τ
e μ τ
кварки c t +2/3
s b -1/3

Фундаментальными частицами являются 6 кварков и 6 лептонов (табл. 1), имеющих спин 1/2 (это фундаментальные фермионы) и несколько частиц со спином 1 (глюон, фотон, бозоны W ± и Z), а также гравитон (спин 2), называемые фундаментальными бозонами (табл. 2). Фундаментальные фермионы делятся на три группы (поколения), в каждой из которых 2 кварка и 2 лептона. Из частиц первого поколения (кварки u, d, электрон е −) состоит вся наблюдаемая материя: из кварков u и d состоят нуклоны, из нуклонов состоят ядра. Ядра с электронами на орбитах образуют атомы и т.д.

Таблица 2

Фундаментальные взаимодействия
Взаимодействие Квант поля Радиус, см Константа взаимодействия
(порядок величины)
Пример
проявления
сильное глюон 10 -13 1 ядро, адроны
электромагнитное γ-квант 10 -2 атом
слабое W ± , Z 10 -16 10 -6 γ-распад
гравитационное гравитон 10 -38 сила тяжести

Роль фундаментальных бозонов в том, что они реализуют взаимодействие между частицами, являясь “переносчиками” взаимодействий. В процессе различных взаимодействий частицы обмениваются фундаментальными бозонами. Частицы участвуют в четырёх фундаментальных взаимодействиях – сильном (1), электромагнитном (10 -2), слабом (10 -6) и гравитационном (10 -38). В скобках указаны цифры, характеризующие относительную силу каждого взаимодействия в области энергий меньше 1 ГэВ. Кварки (и адроны) участвуют во всех взаимодействиях. Лептоны не участвуют в сильном взаимодействии. Переносчиком сильного взаимодействия является глюон (8 типов), электромагнитного – фотон, слабого – бозоны W ± и Z, гравитационного – гравитон.
Подавляющее число частиц в свободном состоянии нестабильно, т.е. распадается. Характерные времена жизни частиц 10 -24 –10 -6 сек. Время жизни свободного нейтрона около 900 сек. Электрон, фотон, электронное нейтрино и возможно протон (и их античастицы) – стабильны.
Основой теоретического описания частиц является квантовая теория поля. Для описания электромагнитных взаимодействий используется квантовая электродинамика (КЭД), слабое и электромагнитное взаимодействие совместно описываются объединённой теорией – электрослабой моделью (ЭСМ), сильное взаимодействие – квантовой хромодинамикой (КХД). КХД и ЭСМ, совместно описывающие сильное, электромагнитное и слабое взаимодействия кварков и лептонов, образуют теоретическую схему, называемую Стандартной Моделью.

Слово атом означает «неделимый». Оно было введено греческими философами для обозначения мельчайших частиц, из которых, согласно их представлению, состоит материя.

Физики и химики девятнадцатого века приняли этот термин для обозначения самых мелких известных им частиц. Хотя мы уже давно в состоянии «расщепить» атомы и неделимое перестало быть неделимым, тем не менее термин этот сохранился. Согласно нынешнему нашему представлению, атом состоит из мельчайших частиц, называемых нами элементарными частицами . Существуют также и другие элементарные частицы, не являющиеся фактически составной частью атомов. Обычно их получают при помощи мощных циклотронов, синхротронов и других ускорителей частиц, специально сконструированных для изучения этих частиц. Они также возникают при прохождении космических лучей через атмосферу. Эти элементарные частицы распадаются спустя несколько миллионных долей секунды, а часто за еще более короткий промежуток времени после своего появления. В результате распада они либо видоизменяются, превращаясь в другие элементарные частицы, либо выделяют энергию в форме излучения.

Изучение элементарных частиц сосредоточивается на все возрастающем числе недолго живущих элементарных частицах. Хотя эта проблема имеет огромное значение, в частности, потому, что связана с самыми фундаментальными законами физики, тем не менее исследование частиц в настоящее время проводится почти в отрыве от других отраслей физики. По этой причине мы ограничимся рассмотрением лишь тех частиц, которые являются постоянными компонентами наиболее распространенных материалов, а также некоторых частиц, очень близко к ним примыкающих. Первой из элементарных частиц, открытых в конце девятнадцатого века, был электрон, ставший затем исключительно полезным слугой. В радиолампах поток электронов движется в вакууме; и именно посредством регулировки этого потока усиливаются входящие радиосигналы и превращаются в звук или шум. В телевизоре электронный луч служит в качестве пера, которое мгновенно и точно копирует на экране приемника то, что видит камера передатчика. В обоих этих случаях электроны движутся в вакууме так, чтобы по возможности ничто не мешало их движению. Еще одним полезным свойством является их способность, проходя через газ, заставлять его светиться. Таким образом, давая возможность электронам проходить через стеклянную трубку, наполненную газом под определенным давлением, мы используем это явление для получения неонового света, применяемого ночью для освещения крупных городов. А вот еще одна встреча с электронами: блеснула молния, и мириады электронов, пробиваясь через толщу воздуха, создают раскатистый звук грома.

Однако в земных условиях имеется сравнительно небольшое число электронов, могущих свободно двигаться, как это мы видели в предыдущих примерах. Большинство из них надежно связаны в атомах. Поскольку ядро атома заряжено положительно, оно притягивает к себе отрицательно заряженные электроны, заставляя их удерживаться на орбитах, находящихся сравнительно близко от ядра. Атом обычно состоит из ядра и некоторого числа электронов. Если электрон покидает атом, его, как правило, немедленно замещает другой электрон, который атомное ядро с большой силой притягивает к себе из своего ближайшего окружения.

Как же выглядит этот замечательный электрон? Никто его не видел и никогда не увидит; и тем не менее мы знаем его свойства настолько хорошо, что можем предсказать со всеми подробностями, как он будет вести себя в самых различных ситуациях. Мы знаем его массу (его «вес») и его электрический заряд. Мы знаем, что чаще всего он ведет себя так, как будто бы перед нами очень мелкая частица , в других же случаях он обнаруживает свойства волны . Исключительно абстрактная, но в то же самое время очень точная теория электрона была предложена в законченном виде несколько десятилетий тому назад английским физиком Дираком. Эта теория дает нам возможность определить, при каких обстоятельствах электрон будет, больше сходен с частицей, а при каких будет преобладать его волновой характер. Такая двойственная природа - частица и волна - затрудняет возможность дать четкую картину электрона; следовательно, теория, учитывающая обе эти концепции и тем не менее дающая законченное описание электрона, должна быть очень абстрактной. Но было бы неразумным ограничивать описание такого замечательного явления, как электрон, столь земными образами, как горошины и волны.

Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как электрон, за исключением лишь того, что заряжена она положительно, а не отрицательно. И действительно, такой двойник электрона был обнаружен и назван позитроном . Он входит в состав космических лучей, а также возникает в результате распада некоторых радиоактивных веществ. В земных условиях жизнь позитрона коротка. Как только он оказывается по соседству с электроном, а случается это во всех веществах, электрон и позитрон «истребляют» друг друга; положительный электрический заряд позитрона нейтрализует отрицательный заряд электрона. Поскольку согласно теории относительности масса является формой энергии и поскольку энергия «неразрушима», энергия, представленная объединенными массами электрона и позитрона, должна быть каким-то образом сохранена. Эту задачу выполняет фотон (квант света), или обычно два фотона, которые излучаются в результате этого рокового столкновения; их энергия равна суммарной энергии электрона и позитрона.

Мы знаем также, что происходит и обратный процесс, Фотон может при определенных условиях, например, пролетая поблизости от ядра атома, сотворить «из ничего» электрон и позитрон. Для такого сотворения он должен обладать энергией, по меньшей мере равной энергии, соответствующей суммарной массе электрона и позитрона.

Стало быть, элементарные частицы не являются вечными или постоянными. И электроны и позитроны могут появляться и исчезать; однако энергия и результирующие электрические заряды сохраняются.

Исключая электрон, элементарной частицей, известной нам гораздо раньше любой другой частицы, является не позитрон, встречающийся сравнительно редко, а протон - ядро атома водорода. Как и позитрон, заряжен он положительно, но масса его примерно в две тысячи раз превосходит массу позитрона или электрона. Подобно этим частицам, протон иногда проявляем волновые свойства, однако лишь в исключительно особых условиях. То, что его волновая природа менее ярко выражена, фактически является прямым следствием обладания им гораздо большей массой. Волновая природа, характерная для всей материи, не приобретает для нас важного значения до тех пор, пока мы не начинаем работать с исключительно легкими частицами, такими, как электроны.

Протон - очень распространенная частица, Атом водорода состоит из протона, являющегося его ядром, и электрона, вращающегося вокруг него по орбите. Протон входит также в состав всех других атомных ядер.

Физики-теоретики предсказывали, что у протона, подобно электрону, имеется античастица. Открытие отрицательного протона или антипротона , обладающего теми же самыми свойствами, что и протон, но заряженного отрицательно, подтвердило это предсказание. Столкновение антипротона с протоном «истребляет» их обоих так же, как и в случае столкновения электрона и позитрона.

Другая элементарная частица, нейтрон , обладает почти такой же массой, как и протон, но электрически нейтральна (без электрического заряда вообще). Ее открытие в тридцатых годах нашего века - примерно одновременно с открытием позитрона - явилось исключительно важным для ядерной физики. Нейтрон входит в состав всех атомных ядер (за исключением, разумеется, обычного ядра атома водорода, который является просто свободным протоном); разрушаясь, атомное ядро выделяет один (или более) нейтрон. Взрыв атомной бомбы происходит благодаря нейтронам, высвобождающимся из ядер урана или плутония.

Поскольку протоны и нейтроны вместе образуют атомные ядра, и те и другие называются нуклонами, Спустя некоторое время свободный нейтрон превращается в протон и электрон.

Нам знакома еще одна частица, называемая антинейтроном , которая, подобно нейтрону, электрически нейтральна. Она обладает многими свойствами нейтрона, однако одно из коренных отличий заключается в том, что антинейтрон распадается на антипротон и электрон. Сталкиваясь, нейтрон и антинейтрон уничтожают друг друга,

Фотон , или световой квант, исключительно интересная элементарная частица. Желая почитать книгу, мы включаем электрическую лампочку. Так вот, включенная лампочка генерирует огромное количество фотонов, которые устремляются к книге, так же как и во все другие уголки комнаты, со скоростью света. Некоторые из них, ударяясь о стены, тут же погибают, другие вновь и вновь ударяются и отскакивают от стенок других предметов, однако спустя менее чем одну миллионную долю секунды с момента появления все они погибают, за исключением лишь немногих, которым удается вырваться через окно и ускользнуть в пространство. Энергия, необходимая для генерирования фотонов, поставляется электронами, протекающими через включенную лампочку; погибая, фотоны отдают эту энергию книге или другому предмету, нагревая его, или глазу, вызывая стимуляцию зрительных нервов.

Энергия фотона, а следовательно, и его масса не -остаются неизменными: существуют очень легкие фотоны наряду с очень тяжелыми. Фотоны, дающие обычный свет, очень легки, их масса составляет всего лишь несколько миллионных долей массы электрона. Другие фотоны обладают массой примерно такой же, как масса электрона, и даже гораздо большей. Примерами тяжелых фотонов являются рентгеновские и гамма-лучи.

Вот общее правило: чем легче элементарная частица, тем выразительнее ее волновая природа. Самые тяжелые элементарные частицы - протоны - выявляют сравнительно слабые волновые характеристики; несколько сильнее они у электронов; самые сильные - у фотонов. В самом деле, волновая природа света была открыта намного раньше, чем его корпускулярные характеристики. Мы знали, что свет есть не что иное, как движение электромагнитных волн, с тех пор как Максвелл Продемонстрировал это на протяжении второй половины прошлого века, но именно Планк и Эйнштейн на заре двадцатого века открыли, что свет имеет и корпускулярные характеристики, что он иногда излучается в виде отдельных «квантов», или, другими словами, в виде потока фотонов. Не приходится отрицать, что трудно объединить и слить воедино в нашем сознании эти две явно несхожие концепции природы света; но мы можем сказать, что подобно «двойственной природе» электрона наше представление о таком неуловимом явлении, каковым является свет, должно быть очень абстрактным. И только когда мы хотим выразить наше представление в грубых образах, мы должны иногда уподоблять свет потоку частиц, фотонов, или же волновому движению электромагнитной природы.

Существует зависимость между корпускулярной природой явления и его «волновыми» свойствами. Чем тяжелее частица, тем короче соответствующая ей длина волны; чем длиннее длина волны, тем легче соответствующая частица. Рентгеновские лучи, состоящие из очень тяжелых фотонов, имеют соответственно очень короткую длину волны. Красный свет, характеризующийся большей длиной волны по сравнению с синим светом, состоит из фотонов более легких по сравнению с фотонами, несущими синий свет. Самые длинные электромагнитные волны из всех существующих - радиоволны - состоят из мельчайших фотонов. Эти волны ни малейшим образом не проявляют свойств частиц, их волновая природа является целиком преобладающей характеристикой.

И наконец, самой мелкой из всех малых элементарных частиц является нейтрино . Оно лишено электрического заряда, и если у него и есть какая-либо масса, то она близка к нулю. С некоторым преувеличением мы можем сказать, что нейтрино просто лишено свойств.

Наше познание элементарных частиц является современной границей физики. Атом был открыт в девятнадцатом веке, и ученые того времени обнаружили все возрастающее число различных видов атомов; подобным же образом сегодня мы находим все больше и больше элементарных частиц. И хотя было доказано, что атомы состоят из элементарных частиц, мы не можем ожидать, что по аналогии будет, найдено, что- элементарные частицы состоят из еще более мелких частиц. Проблема, стоящая перед нами сегодня, совсем иная, и нет ни малейших признаков, указывающих на то, что мы сможем расщепить элементарные частицы. Скорее следует надеяться на то, что будет показана, что все элементарные частицы являются проявлением одного еще более фундаментального явления. И если это оказалось бы возможным установить, мы бы сумели понять все свойства элементарных частиц; смогли бы подсчитать их массы и способы их взаимодействия. Было сделано много попыток подойти к разрешению этой проблемы, являющейся одной из самых важных проблем физики.


Элементарные частицы , в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы " используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.

Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.

Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе m e , равной 9,1×10 -28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10 -19 Кл. Мюоны (символ μ -) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ ν e), мюонное (символ ν μ) и τ-нейтрино (символ ν τ) - легкие (возможно, безмассовые) электрически нейтральные частицы.

Каждому из лептонов соответствует , имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют (символ e +) - античастица по отношению к , положительно заряженный (символ μ +) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).

Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц . Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающей m e и равной 1,672648×10 -24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон (символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все , именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K -мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.

Основные свойства элементарных частиц

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×10 21 лет), протон (более 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10 -22 - 10 -24 с.

Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L ) и барионный (символ В )заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В =-1.

Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример - протон и нейтрон. Общее квантовое число для таких элементарных частиц - так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.

Важное свойство элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e - e + , мюонных пар μ + μ - новых тяжелых частиц при столкновениях лептонов, образование из кварков cc - и bb -состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).

При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e - e + и мюония μ + e - . Эти нестабильные системы, часто называемые водородоподобными . Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов

Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, - кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n -кварков, d -кварков и s -кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.

Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с ) и "красивый" (b ), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n -, d -, s -, с - и b -кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n - и d -кварков. Наличие в адроне наряду с n - и d -кварками одного s- , с - или b -кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".

Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х - начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы - истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами , которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения

Первой открытой элементарной частицей был электрон - носитель отрицательного электрического заряда в атомах (Дж.Дж.Томсон, 1897). В 1919 Э.Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж.Чедвиком. В 1905 А.Эйнштейн постулировал, что электромагнитное излучение является потоком отдельных квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование как особой элементарной частицы впервые предложил В.Паули (1930); электронное

Существование элементарных частиц ученые обнаружили при исследовании ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время эти разделы физики являются близкими, но самостоятельными, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц - это исследование природы, свойств и взаимных превращений элементарных частиц.

Представление о том, что мир состоит из фундаментальных частиц , имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель,1896), а также открытиями электронов (Дж. Томсон 1876) и α-частиц (Э. Резерфорд, 1899). В 1905 году в физике возникло представление о квантах электромагнитного поля - фотонах (А. Эйнштейн).

В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д.Д Иваненко и В.Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон - положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (μ-мезонами ). Затем в 1947-1950 годах были открыты пионы (т. е. π-мезоны ), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными . Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2·10 -6 с, нейтрального π-мезона - 0,87·10 -16 с. Многие массивные частицы - гипероны - имеют среднее время жизни порядка 10 -10 с.

Существует несколько десятков частиц со временем жизни, превосходящим 10 -17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными . Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10 -22 -10 -23 с.

Способность к взаимным превращениям - это наиболее важное свойство всех элементарных частиц. Они способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т. е. исчезновение ) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, например, при столкновении фотона достаточно большой энергии с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном . Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т. е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества , ядра которых состоят из антинуклонов, а оболочка - из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации. В табл. 6.9.1 представлены некоторые сведенья о свойствах элементарных частиц со временем жизни более 10 -20 с. Из многих свойств, характеризующих элементарную частицу, в таблице указаны только масса частицы (в электронных массах), электрический заряд (в единицах элементарного заряда) и момент импульса (так называемый спин ) в единицах постоянной Планка h = h / 2π. В таблице указано также среднее время жизни частицы.

Группа

Название частицы

Символ

Масса (в электронных массах)

Электрический заряд

Спин

Время жизни (с)

Частица

Античастица

Фотоны

Фотон

Стабилен

Лептоны

Нейтрино электронное

ν e

1 / 2

Стабильно

Нейтрино мюонное

ν μ

1 / 2

Стабильно

Электрон

1 / 2

Стабилен

Мю-мезон

μ -

μ +

206,8

1 / 2

2,2 10 -6

Адроны

Мезоны

Пи-мезоны

π 0

264,1

0,87 10 -16

π +

π -

273,1

1 -1

2,6 10 -8

К-мезоны

966,4

1 -1

1,24 10 -8

K 0

974,1

≈ 10 -10 -10 -8

Эта-нуль-мезон

η 0

1074

≈ 10 -18

Барионы

Протон

1836,1

1 -1

1 / 2

Стабилен

Нейтрон

1838,6

1 / 2

Лямбда-гиперон

Λ 0

2183,1

1 / 2

2,63 10 -10

Сигма-гипероны

Σ +

2327,6

1 -1

1 / 2

0,8 10 -10

Σ 0

2333,6

1 / 2

7,4 10 -20

Σ -

2343,1

1 / 2

1,48 10 -10

Кси-гипероны

Ξ 0

2572,8

1 / 2

2,9 10 -10

Ξ -

2585,6

1 / 2

1,64 10 -10

Омега-минус-гиперон

Ω -

3273

1 / 2

0,82 10 -11

Таблица 6.9.1

Элементарные частицы объединяются в три группы: фотоны , лептоны и адроны .

К группе фотонов относится единственная частица - фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц - лептонов . В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц, не указанных в таблице. Все лептоны имеют спин 1/2 .

Третью большую группу составляют тяжелые частицы, называемые адронами . Эта группа делится на две части. Более легкие частицы составляют подгруппу мезонов . Наиболее легкие из них - положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс (табл. 6.9.1). Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η 0 -мезон. Все мезоны имеют спин, равный нулю.

Вторая подгруппа - барионы - включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны - протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин 1/2 .

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Манном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые частицы - адроны - построены из более фундаментальных частиц, названных кварками . На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион - из трех антикварков. Мезоны состоят из пар кварк-антикварк.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда.

Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц - адронов.

Фундаментальные взаимодействия . Процессы, в которых участвуют различные элементарные частицы, сильно различаются по энергиям и характерным временам их протекания. Согласно современным представлениям, в природе осуществляется четыре вида взаимодействий, которые не могут быть сведены к другим, более простым видам: сильное , электромагнитное , слабое и гравитационное . Эти виды взаимодействий называют фундаментальными .

Сильное (или ядерное ) взаимодействие - наиболее интенсивное. Оно обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы - адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка 10 -15 м и менее. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В нем могут принимать участие любые электрически заряженные частицы, а так же фотоны - кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие - определяет ход наиболее медленных процессов, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона

а также безнейтринные процессы распада частиц с большим временем жизни (τ ≥ 10 -10 с).

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезд, планет и т. п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И.Е. Таммом и Д.Д Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.

Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия . Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами - квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π + , π - и π 0 (см. табл. 6.9.1).

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых в екторных бозонов W + , W - и Z 0 , обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие . Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом участвуют векторные бозоны.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействий тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой (Единой Теорией поля).

Физики-теоретики прилагают значительные усилия, чтобы рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения . Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик - гипотетическая частица, названная гравитоном . Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология - наука об эволюции Вселенной - предполагает, что Большой взрыв произошел около 13,7 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 10 32 К, а энергия частиц E = kT достигать значений 10 19 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 10 19 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 10 14 ГэВ). При энергиях порядка 10 3 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи - нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементар­ными частицами считались атомы. Их внут­ренняя структура - ядра и электроны - была обнаружена в начале XXв. в опытах Э. Резерфорда. Размер атомов - около 10 -8 см, ядер - в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10 -16 см, как это следует из современных тео­рий и экспериментов.

Таким образом, сейчас электрон - элемен­тарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нукло­нов - протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полуве­ка, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и элек­трон, т. е. их радиус меньше 10 -16 см. Радиус нуклонов - размер области, занимаемой квар­ками, - около 10 -13 см. Нуклоны принадлежат к большому семейству частиц - барионов, составленных из трех различных (или одина­ковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет раз­личия в свойствах бариона, например, он может иметь различный спин.

Кроме того, кварки могут соединяться в пары - мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он при­нимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и сог­ласно принятым в настоящее время представ­лениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встре­чается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые мож­но было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов.

Вскоре стало ясно, что это - кварки, существо­вание которых предполагалось еще ранее тео­ретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов квар­ков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны - частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены мюон и (совсем не­давно) t-лептон. У каждого из них есть свое нейтрино, так что лептоны ес­тественным образом разбиваются на три пары е, n е; m, n m ;t, n t .

Каждая из этих пар объединяется с соответ­ствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы. Второе поколение тяжелее первого, а третье по­коление тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных час­тиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами ве­щества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых час­тицами вещества. Из них наиболее известная частица - фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W + иW - , обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных р -пучках при энергиях в несколь­ко сотен ГэВ. Это переносчики слабых взаимо­действий между кварками и лептонами. И на­конец, глюоны - переносчики сильных взаимодействий между кварками. Как и сами квар­ки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов. Недавно были зарегистрированы струи адронов, порожденные глюонами. Поскольку все пред­сказания теории кварков и глюонов - кван­товой хромодинамики - сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 - это гравитон. Его существование вытекает из теории тяготе­ния Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить грави­тон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приве­дены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опы­те, но их существование предполагается во многих современных теоретических моделях.

Элементарные частицы

спин 0? 1/2 1 3/2 2?
название Частицы Хиггса Частицы вещества Кванты полей
кварки лептоны фотон векторные бозоны глюон гравитино гравитон
символ H u d n e e g Z W g
(масса) (?) (?) (0,5) (0) (~95Гэв) (~80Гэв) (?) (?)
символ с s n m m
(масса) (0?) (106)
символ t b n t t
(масса) (0?) (1784)
Барионный заряд 0 1/3 1/3 0 0 0 0 0 0 0 0
Электрический заряд 0, ±1 2/3 1/3 0 -1 0 0 ±1 0 0 0
цвет - 3 3 - - - - - 8 - -

Адроны - общее название для частиц, участ­вующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуце­лым спином . Самые известные барионы - протони нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странно­стью . Единицей странности обладают барион лямбда (L°) и семейство барионов сигма (S - , S+ и S°). Индексы +, - ,0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обла­дают барионы кси (X - и X°). Барион W - имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около 10 -10 с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микро­мира это не так. Такая частица, даже двига­ясь относительно медленно, со скоростью, скажем, равной 10% от световой скорости, успевает пройти путь в несколько миллиметров и оста­вить свой след в детекторе элементарных час­тиц. Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного за­ряда. Эта величина введена для описания опытного факта постоянства во всех извест­ных процессах разности между числом барио­нов и антибарионов.

Протон - стабильная частица из класса адронов, ядро атома водорода. Трудно ска­зать, какое событие следует считать откры­тием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и откры­тие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906-1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона,подтвердив открытие искусственного превра­щения элементов. В этих опытах a-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атом­ный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10 -21 . Масса протона m p = (938,2796 ± 0,0027)МэВ или ~ 1,6-10 -24 г, т. е. протон в 1836 раз тяжелее электрона! С современ­ной точки зрения протон не является истин­но элементарной частицей: он состоит из двух u -кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d -кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами - глюонами, квантами поля, переносящего сильные взаимо­действия. Данные экспериментов, в которых рассматривались процессы рассеяния электро­нов на протонах, действительно свидетельству­ют о наличии внутри протонов точечных рас­сеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечныеразмеры ~ 10 -13 см, хотя, разумеется, его нель­зя представлять как твердый шарик. Скорее, протон напоминает облако с размытой грани­цей, состоящее из рождающихся и аннигили­рующих виртуальных частиц.

Протон, как и все адроны, участвует в каж­дом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимо­действия - протоны и электроны в атомах. Примерами слабых взаимодействий могут слу­жить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и ней­трино (для свободного про­тона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полу­целым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, раз­личные гипероны (L, S, X, W) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число - барионный заряд, равный 1 для барионов, - 1 - для антибарионов и О - для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохране­ния барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сох­ранение барионного заряда делает невозмож­ным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический ха­рактер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабиль­ностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

Похожие публикации