Звезда или треугольник что лучше. Схемы соединения асинхронного двигателя в звезду и треугольник

Для включения асинхронного электродвигателя в сеть его статорная обмотка должна быть соединена звездой или треугольником.

Чтобы электродвигатель включить в сеть по схеме "звезда", нужно все концы фаз (С4, С5, С6) соединить электрически в одну точку, а все начала фаз (C1, С2, С3) присоединить к фазам сети. Правильное соединение концов фаз электродвигателя по схеме "звезда" показано на рис. 1, а.

Для включения электродвигателя по схеме "треугольник" начало первой фазы соединяют с конном второй и начало второй - с концом третьей, а начало третьей - с концом первой. Места соединений обмоток подключают к трем фазам сети. Правильное соединение концов фаз электродвигателя по схеме "треугольник" показано рис. 1, б.


Рис. 1. Схемы включения трехфазного асинхронного электродвигателя в сеть: а - фазы соединены звездой, б - фазы соединены треугольником

Соединение фаз двигателя по схеме "звезда"

Соединение фаз двигателя по схеме "треугольник"

Дли выбора схемы соединения фаз трехфазного асинхронного электродвигателя можно использовать данные таблицы 1.

Таблица 1. Выбор схемы соединения обмоток

Из таблицы видно, что при подключении асинхронного двигателя с рабочим напряжением 380/220 В к сети с линейным напряжением 380 В соединять его обмотки можно только звездой! Соединять концы фаз такого электродвигателя по схеме "треугольник" нельзя. Неправильный выбор схемы соединения обмоток электродвигателя может привести к выходу его из строя во время работы.

Вариант соединения обмоток треугольником предусмотрен для подключения двигателей 660/380 В к сети . В этом случае обмотки двигателя могут соединяться по схеме, как "звезда", так и "треугольник".

Такие двигатели могут включаться в сеть при помощи переключателя схем со звезды на треугольник (рис. 2). Это техническое решение позволяет уменьшить пусковой ток трехфазного асинхронного короткозамкнутого электродвигателя большой мощности. При этом сначала обмотки электродвигателя соединяют по схеме "звезда" (при нижнем положении ножей переключателя), потом, когда ротор двигателя наберет номинальную частоту вращения, его обмотки переключают в схему "треугольник" (верхнее положение ножей переключателя).

Рис. 2. Схема включения трехфазного электродвигателя в есть при помощи переключателя фаз со звезды на треугольник

Снижение пускового тока при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы "треугольник" (660В) каждая обмотка двигателя включается на напряжение в √3 раза меньше (380В). При этом потребляемый ток снижается в 3 раза. Снижается также в 3 раза и мощность, развиваемая электродвигателем при пуске.

Но, в связи со всем вышесказанным, такие схемные решения можно использовать только для двигателей с номинальным напряжением 660/380 В и включении их в сеть с таким же напряжением. При попытке включения электродвигателя с номинальным напряжением 380/220 В по такой схеме он выйдет из строя, т.к. его фазы нельзя включать в сеть "треугольником".

Номинальное напряжение электрического двигателя можно посмотреть на его корпусе, где в в виде металлической пластинки размещается его технический паспорт.

Для изменения направления вращения электродвигателя достаточно поменять местами две любые фазы сети независимо от схемы его включения. Для изменения направления вращения асинхронного электродвигателя применяют электрические аппараты ручного управления (реверсивные рубильники, пакетные переключатели) или аппараты дистанционного управления (реверсивные электромагнитные пускатели). Схема включения трехфазного асинхронного электродвигателя в сеть реверсивным рубильником показана на рис. 3.

Рис. 3. Схема включения трехфазного электродвигателя в сеть реверсивным рубильником

Типичные случаи соединений в звезду и треугольник генераторов, трансформаторов и электроприемников рассмотрены в статьях "Схема соединения "Звезда " и "Схема соединения "Треугольник ". Остановимся теперь на важнейшем вопросе о мощности при соединениях в звезду и треугольник, так как для работы каждого механизма, приводимого в действие электродвигателем или получающего питание от генератора или трансформатора, в конечном итоге важна именно мощность .

В сетях переменного тока различают:
полную (кажущуюся) мощность S = E × I или S = U × I ;
активную мощность P = E × I × cos φ или P = U × I × cos φ ;
реактивную мощность Q = E × I × sin φ или Q = U × I × sin φ ,
где Е – электродвижущая сила (э. д. с.); U – напряжение на зажимах электроприемника; I – ток; φ – угол сдвига фаз между током и напряжением 1 .

При определении мощности генераторов в формулы входят э. д. с, при определении мощности электроприемииков – напряжения на их зажимах. При определении мощности электродвигателей учитывают также коэффициент полезного действия, так как на табличке электродвигателя указывается мощность на его валу.

Если мощности фаз S a (P a , Q a); S b (P b , Q b); S c (P c , Q c) одинаковы и соответственно равны S ф, P ф и Q ф, то мощность трехфазной системы, выраженная через фазные величины, равна сумме мощностей трех фаз и составляет:
полная S = 3 × S ф;
активная P = 3 × P ф;
реактивная Q = 3 × Q ф.

Мощность при соединении в звезду

При соединении в звезду линейные токи I и фазные токи I ф равны, а между фазными
и линейными напряжениями существует соотношение U = √3 × U ф, откуда U ф = U / √3.

Сопоставляя эти формулы, видим, что выраженные через линейные величины при соединении в звезду мощности равны:
полная S = 3 × S ф = 3 × (U / √3) × I = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Мощность при соединении в треугольник

При соединении в треугольник линейные U и фазные U ф напряжения равны, а между фазными и линейными токами существует соотношение I = √3 × I ф, откуда I ф = I / √3.

Поэтому выраженные через линейные величины при соединении в треугольник мощности равны:
полная S = 3 × S ф = 3 × U × (I / √3) = √3 × U × I ;
активная P = √3 × U × I × cos φ ;
реактивная Q = √3 × U × I × sin φ .

Важное замечание. Одинаковый вид формул мощности для соединений в звезду и треугольник иногда служит причиной недоразумений, так как наталкивает недостаточно опытных людей на неправильный вывод, будто вид соединений всегда безразличен. Покажем на одном примере, насколько ошибочен такой взгляд.

Электродвигатель был соединен в треугольник и работал от сети 380 В при токе 10 А с полной мощностью

S = 1,73 × 380 × 10 = 6574 В×А.

Затем электродвигатель пересоединили в звезду. При этом на каждую фазную обмотку пришлось в 1,73 раза более низкое напряжение, хотя напряжение в сети осталось тем же. Более низкое напряжение привело к тому, что ток в обмотках уменьшился в 1,73 раза. Но и этого мало. При соединении в треугольник линейный ток был в 1,73 раза больше фазного, а теперь фазный и линейный токи равны.

Таким образом, линейный ток при пересоединении в звезду уменьшился в 1,73 × 1,73 = 3 раза.

Иными словами, хотя новую мощность нужно вычислять по той же формуле , но подставлять в нее следует иные величины , а именно:

S 1 = 1,73 × 380 × (10 / 3) = 2191 В×А.

Из этого примера следует, что при пересоединении электродвигателя с треугольника в звезду и питании его от той же электросети мощность, развиваемая электродвигателем, снижается в 3 раза .

Что происходит при переключении со звезды в треугольник и обратно в наиболее распространенных случаях?

Оговариваем, что речь идет не о внутренних пересоединениях (которые выполняют в заводских условиях или в специализированных мастерских), а о пересоединениях на щитках аппаратов, если на них выведены начала и концы обмоток.
1. При переключении со звезды в треугольник обмоток генераторов или вторичных обмоток трансформаторов напряжение в сети понижается в 1,73 раза, например с 380 до 220 В. Мощность генератора и трансформатора остается такой же. Почему? Потому что напряжение каждой фазной обмотки остается таким же и ток в каждой фазной обмотке такой же, хотя ток в линейных проводах возрастает в 1,73 раза.

При переключении обмоток генераторов или вторичных обмоток трансформаторов с треугольника в звезду происходят обратные явления, то есть линейное напряжение в сети повышается в 1,73 раза, например с 220 до 380 В, токи в фазных обмотках остаются теми же, токи в линейных проводах уменьшаются в 1,73 раза.

Значит, и генераторы и вторичные обмотки трансформаторов, если у них выведены все шесть концов, пригодны для сетей на два напряжения, отличающихся в 1,73 раза.

2. При переключении ламп со звезды в треугольник (при условии их присоединения к той же сети, в которой лампы, включенные звездой, горят нормальным накалом) лампы перегорят.

При переключении ламп с треугольника в звезду (при условии, что лампы при соединении в треугольник горят нормальным накалом) лампы будут давать тусклый свет. Значит, лампы, например, на 127 В в сеть напряжением 127 В должны включаться треугольником. Если же их приходится питать от сети 220 В, необходимо соединение в звезду с нулевым проводом (подробнее смотрите статью "Схема соединения "Звезда "). Соединять в звезду без нулевого провода можно только лампы одинаковой мощности, равномерно распределенные между фазами, как, например, в театральных люстрах.

3. Все сказанное о лампах относится и к сопротивлениям , электрическим печам и тому подобным электроприемникам.

4. Конденсаторы , из которых собирают батареи для повышения cos φ , имеют номинальное напряжение, которое указывает напряжение сети, к которой конденсатор должен присоединяться. Если напряжение сети, например, 380 В, а номинальное напряжение конденсаторов 220 В, их следует соединять в звезду. Если напряжение сети и номинальное напряжение конденсаторов одинаковы, конденсаторы соединяют в треугольник.

5. Как объяснено выше, при переключении электродвигателя с треугольника в звезду мощность его снижается примерно втрое. И наоборот, если электродвигатель переключить со звезды в треугольник , мощность резко возрастает, но при этом электродвигатель, если он не предназначен для работы при данном напряжении и соединении в треугольник, сгорит .

Пуск короткозамкнутого электродвигателя с переключением со звезды в треугольник

применяют для снижения пускового тока, который в 5 – 7 раз превышает рабочий ток двигателя. У двигателей сравнительно большой мощности пусковой ток настолько велик, что может вызвать перегорание предохранителей, отключение автомата и привести к значительному снижению напряжения. Уменьшение напряжения снижает накал ламп, уменьшает вращающий момент электродвигателей 2 , может вызвать отключение контакторов и магнитных пускателей. Поэтому стремятся уменьшить пусковой ток, что достигается несколькими способами. Все они в итоге сводятся к понижению напряжения в цепи статора на период пуска. Для этого в цепь статора на период пуска вводят реостат, дроссель, автотрансформатор либо переключают обмотку со звезды в треугольник. Действительно, перед пуском и в первый период пуска обмотки соединены в звезду. Поэтому к каждой из них подводится напряжение, в 1,73 раза меньшее номинального, и, следовательно, ток будет значительно меньше, чем при включении обмоток на полное напряжение сети. В процессе пуска электродвигатель увеличивает частоту вращения и ток снижается. Тогда обмотки переключают в треугольник.

Предупреждения:
1. Переключение со звезды в треугольник допустимо лишь для двигателей с легким режимом пуска, так как при соединении в звезду пусковой момент примерно вдвое меньше момента, который был бы при прямом пуске. Значит, этот способ снижения пускового тока не всегда пригоден, и если нужно снизить пусковой ток и одновременно добиться большого пускового момента, то берут электродвигатель с фазным ротором, а в цепь ротора вводят пусковой реостат.
2. Переключать со звезды в треугольник можно только те электродвигатели, которые предназначены для работы при соединении в треугольник, то есть имеющие, обмотки, рассчитанные на линейное напряжение сети.

Переключение с треугольника в звезду

Известно, что недогруженные электродвигатели работают с очень низким коэффициентом мощности cos φ . Поэтому рекомендуется недогруженные электродвигатели заменять менее мощными. Если, однако, выполнить замену нельзя, а запас мощности велик, то не исключено повышение cos φ переключением с треугольника в звезду. Нужно при этом измерить ток в цепи статора и убедиться в том, что он при соединении в звезду не превышает при нагрузке номинального тока; в противном случае электродвигатель перегреется.

1 Активная мощность измеряется в ваттах (Вт), реактивная – в вольт-амперах реактивных (вар), полная – в вольт-амперах (В×А). Величины в 1000 раз большие соответственно называют киловатт (кВт), киловар (квар), киловольт-ампер (кВ×А).
2 Вращающий момент электродвигателя пропорционален квадрату напряжения. Следовательно, при снижении напряжения на 20% вращающий момент снижается не на 20, а на 36% (1² - 0,82² = 0,36).

При создании любого прибора важно не только подобрать необходимые детали, но и верно их все соединить. И в рамках данной статьи будет рассказано про соединение звездой и треугольником. Где это применяется? Как схематически данное действие выглядит? На эти, а также другие вопросы и будут даны ответы в рамках статьи.

Что собой представляет трёхфазная система электроснабжения?

Она является частным случаем многофазных систем построения электрических цепей для переменного тока. В них действуют созданные с помощью общего источника энергии синусоидальные ЭДС, обладающие одинаковой частотой. Но при этом они сдвинуты относительно друг друга на определённую величину фазового угла. В трехфазной системе он равняется 120 градусам. Шестипроводная (часто ещё называемая многопроводной) конструкция для переменного тока была изобретена в своё время Николой Теслой. Также значительный вклад в её развитие внёс Доливо-Добровольский, который первым предложил делать трёх- и четырепроводные системы. Также он обнаружил ряд преимуществ, которые имеют трехфазные конструкции. Что же собой представляют схемы включения?

Схема звезды

Так называют соединение, при котором концы фаз обмоток генератора соединяют в общую точку. Её называют нейтралью. Концы фаз обмоток потребителя также соединяются в одну общую точку. Теперь к проводам, которые их соединяют. Если он находится между началом фаз потребителя и генератора, его называют линейным. Провод, который соединяет нейтрали, обозначают как нейтральный. Также от него зависит название цепи. Если есть нейтральный, схема называется четырёхпроводной. В ином случае она будет трёхпроводной.

Треугольник

Это тип соединения, в котором начало (Н) и конец (К) схемы находятся в одной точке. Так, К первой фазы подсоединён у Н второй. Её К соединяется с Н третьей. А её конец соединён с началом первой. Такую схему можно было бы назвать кругом, если не особенность её монтирования, когда более эргономичным является размещение в виде треугольника. Чтобы узнать все особенности соединения, ознакомитесь с ниже приведёнными видами соединений. Но до этого ещё немного информации. Чем отличается соединение звездой и треугольником? Разница между ними заключается в том, что по-разному соединяются фазы. Также существуют определённые отличия в эргономичности.

Виды

Как можно понять из рисунков, существует довольно много вариантов реализации включения деталей. Сопротивления, которые возникают в таких случаях, называют фазами нагрузки. Выделяют пять видов соединений, по которым может быть подключен генератор к нагрузке. Это:

  1. Звезда-звезда. Вторая используется с нейтральным проводом.
  2. Звезда-звезда. Вторая используется без нейтрального провода.
  3. Треугольник-треугольник.
  4. Звезда-треугольник.
  5. Треугольник-звезда.

А что это за оговорки в первом и втором пунктах? Если вы уже успели задаться этим вопросом, прочитайте информацию, которая идёт к схеме звезды: там есть ответ. Но здесь хочется сделать небольшое дополнение: начала фаз генераторов обозначаются с применением заглавных букв, а нагрузки - прописными. Это относительно схематического изображения. Теперь по опыту использования: когда выбирают направление протекания тока, в линейных проводах делают так, чтобы он был направлен со стороны генератора к нагрузке. С нулевыми поступают полностью наоборот. Посмотрите, как выглядит схема соединения звезда-треугольник. Рисунки очень хорошо наглядно показывают, как и что должно быть. Схема соединения обмоток звезда/треугольник представлены в разных ракурсах, и проблем с их пониманием быть не должно.

Преимущества

Каждая ЭДС работает в определённой фазе периодического процесса. Для обозначения проводников используют латинские буквы A, B, C, L и цифры 1, 2, 3. Говоря про трехфазные системы, обычно выделяют такие их преимущества:

  1. Экономичность при передаче электричества на значительные расстояния, которое обеспечивает соединение звездой и треугольником.
  2. Малая материалоёмкость трехфазных трансформаторов.
  3. Уравновешенность системы. Данный пункт является одним из самых важных, поскольку позволяет избежать неравномерной механической нагрузки на электрогенерирующую установку. Из этого вытекает больший срок службы.
  4. Малой материалоёмкостью обладают силовые кабели. Благодаря этому при одинаковой потребляемой мощности в сравнении с однофазными цепями уменьшаются токи, которые необходимы, чтобы поддерживать соединение звездой и треугольником..
  5. Можно без значительных усилий получить круговое вращающееся магнитное поле, что необходимо для работоспособности электрического двигателя и целого ряда других электротехнических устройств, работающих по похожему принципу. Это достигается благодаря возможности создания более простой и одновременно эффективной конструкции, что, в свою очередь, вытекает из показателей экономичности. Это ещё один значительный плюс, который имеет соединение звездой и треугольником.
  6. В одной установке можно получить два рабочих напряжения - фазное и линейное. Также можно сделать два уровня мощности, когда присутствует соединение по принципу «треугольника» или «звезды».
  7. Можно резко уменьшать мерцание и стробоскопический эффект светильников, работающих на люминесцентных лампах, пойдя по пути размещения в нём устройств, питающихся от разных фаз.

Благодаря вышеуказанным семи преимуществам трехфазные системы сейчас являются наиболее распространёнными в современной электронике. Соединение обмоток трансформатора звезда/треугольник позволяет подобрать оптимальные возможности для каждого конкретного случая. К тому же неоценимой является возможность влиять на напряжение, передающееся по сетям к домам жителей.

Заключение

Данные системы соединения являются самыми популярными благодаря своей эффективности. Но следует помнить, что работа идёт с высоким напряжением, и необходимо соблюдать крайнюю осторожность.

При переезде в новый дом Вы начинаете жизнь с чистого листа. Постепенно все осматриваете и осваиваете, включаете электротехнику, и даже не задумываетесь над тем, какая опасность может Вас подстерегать, ведь розетки могут оказаться незаземленными.

Это распространенная проблема вторичного жилья, особенно в старых домах с двухжильной проводкой. Советские розетки не заземлялись, и многие продолжают ими пользоваться.

Но, времена меняются, как и требования к безопасности. Сейчас, когда большее количество электрооборудования создает более высокую нагрузку на сеть, устаревшие розетки стали опасными.

03.07.2018

Абсолютным называется полное давление, создаваемое средой; барометрическим — давление, производимое весом воздушного столба атмосферы. Избыточное давление представляет собой разность между абсолютным и барометрическим давлением: Р=Р a —Р б

Разрежение (Р р) — это разность между барометрическим и абсолютным давлением: Р р =Р б —Р a . Глубокое разрежение называется вакуумом .

С 1 января 1980 года применяется основная единица давления — паскаль (Па = 1 Н/м 2); кратными единицами являются килопаскаль (1 кПа=1000 Па) и мегапаскаль (1 МПа = 1000 Па).

29.05.2018

Типа КС состоят из отдельных легкосъемных модулей, включаемых в схему с помощью штепсельных разъемов. В случае неисправности прибора нужно, поочередно меняя модули, обнаружить неисправный, установить причину и устранить ее. Возможные неисправности и способы их устранения указаны в табл. 1.

В техническое обслуживание автоматических измерительных приборов входят смена диаграммной ленты, наполнение чернилами баллона пишущего устройства, чистка или смена пера и капилляра, смазка и чистка частей механизма, замена пружины с контактами реохорда, тросика, двигателей, усилителя и источника стабилизированного питания.

Смену диаграммной ленты производят следующим образом. Снимают лентопротяжный механизм, устанавливают рулон чистой ленты между полуосями и надевают его на подпружиненную полуось, затем, прижав ее к стенке кронштейна, надевают рулон на вторую полуось. При этом плоская пружина должна прижиматься к рулону. Потом ленту перекидывают через ведущий барабан, надев перфорациями на пуклевки, и пропускают между линейкой и кронштейном лентопротяжного механизма. Заводят возвратную пружину, поворачивая гильзу по часовой стрелке на 15—20 оборотов и придерживая ее рукой, чтобы пружина не раскрутилась. Закрепляют конец ленты на гильзе, намотав два слоя бумаги. Отпускают гильзу, и заведенная пружина, раскручиваясь, обеспечивает натяжение ленты. После заправки бумаги лентопротяжный механизм устанавливают на место.

СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

способы соединений элементов электрич. цепей, при к-рых ветви цепи образуют соответственно трёхлучевую звезду и треугольник. Наибольшее распространение С. з. и т. получили в трёхфазных электрич. цепях. При соединении звездой концы обмоток трёх фаз генератора (трансформатора, электродвигателя) объединяются в общую нейтральную точку, а начала обмоток присоединяются к трём отходящим проводам ("линейные провода"). При соединении треугольником конец каждой фазы соединяется с началом следующей и к полученным трём узлам присоединяются линейные провода. Если и генератор и приёмник электроэнергии соединены звездой, то нейтр. точки могут быть связаны четвёртым (нейтр.) проводом. У симметричных приёмников, соединённых звездой или треугольником, сопротивления всех трёх фаз одинаковы. В симметричной трёхфазной цепи, соединённой треугольником, напряжения U л между линейными проводами равны напряжениям U ф на фазах приёмника, а силы тока в линейных проводах в корень из 3 раз больше, чем в фазах приёмника. При соединении звездой линейные напряжения больше фазных в корень из 3 раз, а силы тока в линейных проводах и в фазах одинаковы. См. рис.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СОЕДИНЕНИЯ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ" в других словарях:

    СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ - способы соединений, применяемые в трехфазной электрической цепи (рис. С 15). При соединении звездой концы обмоток трех фаз генератора (трансформатора, электродвигателя) соединяют в общую нейтральную точку, а начала обмоток присоединяют к трем… … Металлургический словарь

    В электротехнике, способы соединения элементов электрических цепей (См. Электрическая цепь), при которых ветви цепи образуют соответственно треугольник и трехлучевую звезду (см. рис.). Наибольшее распространение Т. и з. с. получили в… …

    Трёхфазная система, совокупность трёх однофазных электрических цепей переменного тока (См. Переменный ток) (называемых фазами), в которых действуют три переменных напряжения одинаковой частоты, сдвинутых по фазе друг относительно друга;… …

    Попытки применить электричество как двигательную силу были сделаны еще в начале прошлого столетия. Так, после того как (1821 г.) Фарадеем было открыто явление вращения магнитов вокруг проводников с токами и наоборот, Sturgeons и Barlow построили… …

    - (англ. selsyn, от англ. self сам и греч. sýnchronos одновременный, синхронный) Электрическая машина, позволяющая осуществлять угловое перемещение вала какого либо устройства или механизма в соответствии с угловым перемещением другого вала … Большая советская энциклопедия

    Э. канализация представляет собой ряд приспособлений и сооружений для распределения Э. энергии от данного источника к приемникам, расположенным в разных пунктах данной местности. Главной частью Э. канализации являются провода, по которым… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона - Трёхфазная система электроснабжения частный случай многофазных систем электрических цепей, в которых действуют созданные общим источником синусоидальные ЭДС одинаковой частоты, сдвинутые друг относительно друга во времени на определённый… … Википедия

Применение однофазных систем для передачи большого количества энергии на значительные расстояния вызвало необходимость удешевления стоимости электрических линий. Кроме того, однофазные двигатели не имели начального пускового момента и не соответствовали требованиям промышленного электропривода. Поэтому использование однофазных систем ограничивалось электроосветительными установками. В связи с этим проблема передачи энергии превратилась в комплексную: необходимо было одновременно разработать схему экономичной электропередачи высокого напряжения и надежную простую конструкцию электродвигателя, удовлетворяющего требованиям промышленного электропривода.

В разработке этой проблемы принимали участие ученые и инженеры разных стран. Однако выдающихся результатов добился М. О. Доливо-Дорбровольский, придавший своим исследованиям практический характер. Он по праву считается основоположником создания трехфазной техники.

Трехфазные системы имеют следующие преимущества перед однофазными:

Экономия до 25% цветных металлов на сооружение линий электропередачи.

Возможность применения трехфазных асинхронных двигателей, простых по конструкции и надежных в эксплуатации.

Наличие двух эксплуатационных напряжений при четырехпроводной системе, полученной в случае соединения звездой.

Трехфазную систему можно рассматривать как частный случай многофазной. Под многофазной системой подразумевают совокупность нескольких цепей, в которых одновременно действуют Э.Д.С., имеющие одинаковою частоту и амплитуду, но сдвинутых между собой по фазе. В трехфазной системе связаны вместе пары цепи, в каждой из которых генерируется равная по амплитуде синусоидальная Э.Д.С. одной и той же частоты, но сдвинутая по фазе относительно Э.Д.С., в других цепях на 1/3 периода.

Схема простейшего генератора трехфазного тока показана на рис. 3.1.

Рис.3.1. схема генератора трехфазного тока

На оси жестко закреплены три одинаковые катушки (обмотки), плоскости которых сдвинуты относительно друг друга на 120°. При вращении системы этих катушек в однородном магнитном поле с постоянной угловой скоростью со, в каждой из них индуктируется переменная синусоидальная Э.Д.С. Амплитудные значения и частота этих Э.Д.С. будут одинаковы, но по фазе Э.Д.С. сдвинуты относительно друг друга на 1/3 периода, в силу того, что следующая катушка занимает в пространстве положение предыдущей спустя 1/3 оборота. Начало обмоток трехфазного генератора принято обозначать буквами А, В, С, а соответствующие им концы - X, Y, Z. Принимая за начало отсчета времени момент, когда Э.Д.С. в обмотке А-Х равна нулю можно записать следующие зависимости:


(3.1)

Соответствующие системе уравнений графики е(t) показаны на рис.3.2.

Рис.3.2. кривые Э.Д.С. трехфазной системы

В комплексной форме система уравнений (4.1) запишется в виде:

(3.2)

Трехфазная система в которой Э.Д.С. во всех фазах одинаковы и угол между ними равен 120°, называется симметричной. Для симметричной системы Е А = E В = Е С = Е ф .

Векторная диаграмма Э.Д.С. (рис.3.3.) представляет собой симметричную трехлучевую звезду.

Рис.3.3. Векторы фазных Э.Д.С. трехфазной системы

При расчете трехфазных цепей используют фазовый оператор .

Основное свойство фазового оператора:

Уравнение (3.3) можно переписать в виде (1+а+а 2)=0.

С использованием фазового оператора система уравнений (3.2) запишется следующем образом:

(3.4)

Для симметричной системы, используя уравнение (3.3)

Е А +Е В +Е С =Е А + а 2 Е В + аЕ С = Е ф (1+а 2 + а)=0 .

Очередность, в которой фазовые Э.Д.С. достигают максимального значения, называется порядком чередования фаз. В рассмотренном случае за фазой А следует фаза В, затем - фаза С. Такой порядок чередования фаз называется прямой. Для получения обратного порядка чередования фаз (А, С, В) достаточно изменить направление вращения катушек (рис. 3.1).

Соединения звездой и треугольником

Существуют два основных способа соединения обмоток генераторов и приемников в трехфазных цепях: соединение звездой и треугольником (рис.3.4. и рис.3.5.)


Рис.3.4. Трехфазная система, соединенная по схеме звезды


Рис.3.5. Трехфазная система, соединенная по схеме треугольник

При соединении звездой (рис. 3.4.) все концы (Х, У, Z) фазных обмоток генератора соединяют в одну общую точку. Общие точки генератора и приемника называют нулевой точкой генератора (0) и нулевой точкой приемника (О /), а соединяющий их провод - нулевым или нейтральным. Провода, соединяющие обмотки генератора с приемником называют линейными. При соединении треугольником (рис. 3.5.) фазные обмотки генератора соединяют последовательно так, чтобы начало одной обмотки соединялось с концом другой. При таком соединении фазные Э.Д.С. направлены одинаково и, следовательно, внутри треугольника генератора действует их алгебраическая сумма. При постоянном токе такое последовательное соединение источников в замкнутом контуре вызвало бы большой ток короткого замыкания . Но в трехфазной системе в любой момент времени e А +e В +e С =0 (рис. 3.2.). Поэтому никакого внутреннего уравнительного тока в треугольнике, образуемом обмотками генератора, не возникает.

Общие точки каждой пары фазных обмоток генератора и общие точки каждой пары ветвей приемника соединяются проводами, которые называются линейными. Схемы соединения обмоток источников питания и приемников не зависят друг от друга. Лучи звезды или ветви треугольника приемника называют фазами приемника, а сопротивления фаз приемника - фазными сопротивлениями. Э.Д.С., наводимые в фазных обмотках генератора, напряжения на фазах приемника и токи в фазах называют, соответственно, фазными Э.Д.С., напряжениями и токами (E Ф,U Ф, I Ф). Напряжения между линейными проводами и токи в них называют линейными напряжениями и токами (U л, I л). При соединении фаз звездой линейные и фазные токи равны I л =I Ф. При соединении фаз треугольником линейное напряжение между проводами равно фазному напряжению U л =U Ф.

Положительное направление токов во всех линейных проводах берется от источника питания к приемнику, а в нейтральном проводе - от нейтральной точки приемника к нейтральной точке источника питания. Положительные направления Э.Д.С. в ветвях треугольника источника питания выбирают в направлении А С В А, а напряжений и токов в ветвях треугольника нагрузки - в направлении А В С А (рис. 3.5.). Трехфазный приемник называют симметричным, если комплексные сопротивления всех фаз одинаковы. В противном случае он называются несимметричным.

Если симметричный приемник подключен к симметричной системе Э.Д.С., то получается симметричная система токов.

Режим работы трехфазной цепи , при котором трехфазные системы напряжений и токов симметричны, называется симметричным режимом.

Похожие публикации