Укажите что означает компьютерный эксперимент. Компьютерный эксперимент Компьютерный эксперимент Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство

| Планирование уроков на учебный год | Основные этапы моделирования

Урок 2
Основные этапы моделирования





Изучив эту тему, вы узнаете:

Что такое моделирование;
- что может служить прототипом для моделирования;
- какое место занимает моделирование в деятельности человека;
- каковы основные этапы моделирования;
- что такое компьютерная модель;
- что такое компьютерный эксперимент.

Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. Эксперимент - это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.

В школе вы проводите опыты на уроках биологии, химии, физики, географии.

Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещают в термостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос - не велика потеря при разрушении. А если самолет или ракета?

Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение, тем не менее, очень велико.

С развитием компьютерной техники появился новый уникальный метод исследования - компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана эксперимента и проведение исследования.

План эксперимента

План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели. 

Тестирование - процесс проверки правильности построенной модели.

Тест - набор исходных данных, позволяющий определить пра- - вильность построения мЪдели.

Чтобы быть уверенным в правильности получаемых результатов моделирования, надо: ♦ проверить разработанный алгоритм построения модели; ♦ убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделировании.

Для проверки правильности алгоритма построения модели используется тестовый набор исходных данных, для которых конечный результат заранее известен или предварительно определен другими способами.

Например, если вы используете при моделировании расчетные формулы, то надо подобрать несколько вариантов исходных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты моделирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их расхождения. Тестовые данные могут совершенно не отражать реальную ситуацию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание.

Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо подобрать тестовый пример с реальными исходными данными.

Проведение исследования

После тестирования, когда у вас появилась уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования. 

В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.

Схема подготовки и проведения компьютерного эксперимента приведена на рисунке 11.7.

Рис. 11.7. Схема компьютерного эксперимента

Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. На рисунке 11.2 видно, что этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению задачи.

Основой выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощённое построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели у то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Главное, надо всегда помнить: выявленная ошибка - тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:

О, сколько нам открытий чудных
Готовят просвещенья дух
И опыт, сын ошибок трудных,
И гений, парадоксов друг,
И случай, бог изобретатель...

Контрольные вопросы и задания

1. Назовите два основных типа постановки задач моделирования.

2. В известном «Задачнике» Г. Остера есть следущая задача:

Злая колдунья, работая не покладая рук, превращает в гусениц по 30 принцесс в день. Сколько дней ей понадобится, чтобы превратить в гусениц 810 принцесс? Сколько принцесс в день придется превращать в гусениц, чтобы управиться с работой за 15 дней?
Какой вопрос можно отнести к типу «что будет, если...», а какой - к типу «как сделать, чтобы...»?

3. Перечислите наиболее известные цели моделирования.

4. Формализуйте шутливую задачу из «Задачника» Г. Остера:

Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая - 5 км/час.
Через сколько времени начнется драка? 

5. Назовите как можно больше характеристик объекта «пара ботинок ». Составьте информационную модель объекта для разных целей:
■ выбор обуви для туристского похода;
■ подбор подходящей коробки для обуви;
■ покупка крема для ухода за обувью.

6. Какие характеристики подростка существенны для рекомендации по выбору профессии?

7. По каким причинам компьютер широко используется в моделировании?

8. Назовите известные вам инструменты компьютерного моделирования.

9. Что такое компьютерный эксперимент? Приведите пример.

10. Что такое тестирование модели?

11. Какие ошибки встречаются в процессе моделирования? Что надо делать, когда ошибка обнаружена?

12. В чем заключается анализ результатов моделирования? Какие выводы обычно делаются?

В представленном выше определении термин "эксперимент" имеет двойственный смысл. С одной стороны, в компьютерном эксперименте, так же как и в реальном, исследуются отклики системы на те или иные изменения параметров либо на внешние воздействия. В качестве параметров часто используются температура, плотность, состав. А воздействия чаще всего реализуются через механические, электрические или магнитные поля. Разница состоит лишь в том, что экспериментатор имеет дело с реальной системой, в то время как в компьютерном эксперименте рассматривается поведение математической модели реального объекта. С другой стороны, возможность получать строгие результаты для четко определенных моделей позволяет использовать компьютерный эксперимент как самостоятельный источник информации для проверки предсказаний аналитических теорий и, следовательно, в этом качестве результаты моделирования играют роль того же эталона, что и опытные данные.

Из всего сказанного видно, что существует возможность двух очень разных подходов к постановке компьютерного эксперимента, что обусловлено характером решаемой задачи и тем самым определяет выбор модельного описания.

Во-первых, расчеты методами МД или МК могут преследовать чисто утилитарные цели, связанные с предсказанием свойств конкретной реальной системы и их сопоставлением с физическим экспериментом. В этом случае можно делать интересные прогнозы и проводить исследования в экстремальных условиях, например, при сверхвысоких давлениях или температурах, когда реальный эксперимент по различным причинам неосуществим либо требует слишком больших материальных затрат. Моделирование на компьютере часто является вообще единственным путем получения наиболее подробной ("микроскопической") информации о поведении сложной молекулярной системы. Это особенно наглядно это показали численные эксперименты динамического типа с различными биосистемами: глобулярными белками в нативном состоянии, фрагментами ДНК и РНК, липидными мембранами. В целом ряде случаев полученные данные заставили пересмотреть или существенно изменить имевшиеся ранее представления о структуре и функционировании этих объектов. При этом следует иметь в виду, что поскольку в подобных расчетах применяют разного рода валентные и невалентные потенциалы, которые лишь аппроксимируют истинные взаимодействия атомов, то это обстоятельство в конечном итоге и определяет меру соответствия между моделью и реальностью. Первоначально проводят решение обратной задачи, когда потенциалы калибруют по имеющимся опытным данным, и только потом уже эти потенциалы используют для получения более детальных сведений о системе. Иногда, параметры межатомных взаимодействий могут быть в принципе найдены из квантово-химических расчетов, выполненных для более простых модельных соединений. При моделировании методами МД или МК молекула трактуется не как совокупность электронов и ядер, подчиняющаяся законам квантовой механики, а как система связанных классических частиц - атомов. Такая модель называется механической моделью молекулы .

Целью другого подхода к постановке компьютерного эксперимента может быть понимание общих (универсальных или модельно-инвариантных) закономерностей поведения изучаемой системы, то есть таких закономерностей, которые определяются лишь наиболее типическими особенностями данного класса объектов, но не деталями химического строения отдельно взятого соединения. То есть в этом случае компьютерный эксперимент имеет своей целью установление функциональных связей, а не расчет числовых параметров. Эта идеология в наиболее отчетливой форме присутствует в скейлинговой теории полимеров. С точки зрения такого подхода компьютерное моделирование выступает в роли теоретического инструмента, который, прежде всего, позволяет проверить выводы существующих аналитических методов теории или дополнить их предсказания. Подобное взаимодействие между аналитической теорией и компьютерным экспериментом бывает очень плодотворным, когда в обоих подходах удается использовать идентичные модели. Наиболее ярким примером такого рода обобщенных моделей полимерных молекул может служить так называемая решеточная модель . На ее основе выполнено множество теоретических построений, в частности связанных с решением классической и, в каком то смысле, основной задачи физикохимии полимеров о влиянии объемных взаимодействий на конформацию и, соответственно, на свойства гибкой полимерной цепи. Под объемными взаимодействиями обычно подразумевают короткодействующие силы отталкивания, которые возникают между удаленными вдоль по цепи звеньями, когда они сближаются в пространстве за счет случайных изгибов макромолекулы. В решеточной модели реальную цепь рассматривают как ломаную траекторию, которая проходит через узлы правильной решетки заданного типа: кубической, тетраэдрической и др. Занятые узлы решетки соответствуют полимерным звеньям (мономерам), а соединяющие их отрезки - химическим связям в скелете макромолекулы. Запрет самопересечений траектории (или, иными словами, невозможность одновременного попадания двух и более мономеров в один решеточный узел) моделирует объемные взаимодействия (Рис. 1). То есть если, например, если используется метод МК и при смещении случайно выбранного звена оно попадает в уже занятый узел, то такая новая конформация отбрасывается и уже не учитывается в вычислении интересующих параметров системы. Различные расположения цепи на решетке соответствуют конформациям полимерной цепи. По ним и проводится усреднение требуемых характеристик, например расстояния между концами цепи R.

Исследование такой модели позволяет понять, как объемные взаимодействия влияют на зависимость среднеквадратичной величины от числа звеньев в цепи N. Конечно величина , определяющая средние размеры полимерного клубка, играет основную роль в разных теоретических построениях и может быть измерена на опыте; однако до сих пор не существует точной аналитической формулы для расчета зависимости от N при наличии объемных взаимодействий. Можно также ввести дополнительно энергию притяжения между теми парами звеньев, которые попали в соседствующие узлы решетки. Варьируя эту энергию в компьютерном эксперименте, удается, в частности, исследовать интересное явление, называемое переходом "клубок -- глобула", когда за счет сил внутримолекулярного притяжения развернутый полимерный клубок сжимается и превращается в компактную структуру - глобулу, напоминающую жидкую микроскопическую каплю. Понимание деталей такого перехода важно для развития наиболее общих представлений о ходе биологической эволюции, приведшей к возникновению глобулярных белков.

Существуют различные модификации решеточных моделей, например, такие, в которых длины связей между звеньями не имеют фиксированных значений, но способны меняться в определенном интервале, гарантирующем лишь запрет самопересечений цепи именно так устроена широко распространенная модель с "флуктуирующими связями". Однако все решеточные модели объединяет то, что они являются дискретными, то есть число возможных конформаций такой системы всегда конечно (хотя и может составлять астрономическую величину даже при сравнительно небольшом количестве звеньев в цепи). Все дискретные модели обладают очень высокой вычислительной эффективностью, но, как правило, могут исследоваться только методом Монте-Карло.

Для ряда случаев используются континуальные обобщенные модели полимеров, которые способны менять конформацию непрерывным образом. Простейший пример - цепь, составленная из заданного числа N твердых шаров, последовательно соединенных жесткими или упругими связями. Такие системы могут исследоваться как методом Монте-Карло, так и методом молекулярной динамики.

В заключение главы рассмотрим вопрос: куда относить компьютерный эксперимент и компьютерное моделирование (computer simulations)!

Первоначально компьютерное моделирование появляется в метеорологии и ядерной физике, но сегодня спектр его применения в науке и технике чрезвычайно широк. Очень показателен в этом отношении пример "глобального моделирования", где мир рассматривается как совокупность взаимодействующих между собой подсистем: население, социум, экономика, производство продовольствия, инновационный комплекс, природные ресурсы, среда обитания, страны и регионы мира (первым примером является опубликованный в 1972 г. доклад Римскому клубу "Пределы роста"). Развитие и взаимодействие этих подсистем определяют мировую динамику.

Очевидно, что мы имеем здесь дело со сверхсложной системой с массой нелинейных взаимодействий, для которой не удается построить ВИО-тип модели. Поэтому здесь поступают следующим образом. Собирается полидисциплинарная группа, состоящая из специалистов, относящихся к различным подсистемам. Эта группа, исходя из имеющихся у ее членов знаний, составляет блок-схему из большого множества элементов и связей. Эта блок-схема преобразуется в математическую компьютерную модель, репрезентирующую моделируемую систему. После чего проводятся численные эксперименты с компьютерной моделью, т.е. компьютерные эксперименты, которые со стороны создания моделей объектов и процессов, отладки и выполнения напоминают реальный сложный эксперимент.

Между мысленным и компьютерным экспериментами есть определенная аналогия. В случае компьютерного эксперимента отрабатываемая в ходе него компьютерная модель является аналогом ВИО-модели в мысленном ВИО-эксперименте. В обоих случаях экспериментальное исследование является элементом поиска адекватной теоретической модели. В ходе этого поиска в первом случае подбираются ПИО и взаимодействия между ними (и их величина), а во втором – элементы и связи (и их величина). Из этого сопоставления очевидно, что результатом такой экспериментальной деятельности в обоих случаях возможно появление нового знания. То есть компьютерные модели соответствуют теоретическим ВИО-моделям явления, а компьютерный эксперимент является средством для их построения. При этом экспериментирование происходит с моделью, а не явлением (на то же согласно работе указывается и в работах ).

В физике и других естественных науках в случае "лабораторных" явлений реальный эксперимент может что-то менять в самом явлении ("задавать ему вопрос"). Если этого оказывается достаточно, чтобы создать ВИО-модель, и остается вопрос лишь об уточнении ее параметров, то в этом случае компьютерная модель имеет более тривиальное, чем описано выше, применение – решение сложных уравнений, описывающих физическую или техническую систему, и подбор параметров для систем, для которых ВИО-модель уже задана. Этот случай часто называют "численным экспериментом".

Однако в физике рассматриваются и явления, которые нужно качественно изучить до помещения их в лабораторию, например выделение ядерной энергии или рождение элементарных частиц. Подобная ситуация может возникнуть: 1) в перечисленных для мысленного эксперимента случаях экономической или технической сложности реального эксперимента, 2) в случае отсутствия ВИО-модели, т.е. отсутствия теории явления (как в случае турбулентных течений). В ядерной физике и физике элементарных частиц мы имеем первый, если нс оба случая. Здесь мы имеем ситуацию, аналогичную "глобальному моделированию", и начинаем экспериментировать с теоретическими моделями путем компьютерного моделирования. Поэтому неудивительно, что компьютерное моделирование появилось в ядерной физике очень рано.

Итак, компьютерный эксперимент и компьютерные модели в нетривиальном случае, как в примере с "глобальным моделированием", отвечают, соответственно, мысленному ВИО-эксперименту и теоретическим ВИО- моделям явления.

Эксперимент – это форма связи между двумя сторонами – явлением и теоретической моделью. В принципе, отсюда следует возможность манипулирования с двумя сторонами . В случае реального эксперимента экспериментирование происходит с явлением, а в случае мысленного и компьютерного эксперимента, который можно рассматривать как аналог мысленного, – с моделью. Но в обоих случаях целью является получение нового знания в виде адекватной теоретической модели.

  • Это включает и замечание E. Winsberg: "Неверно, что реальный эксперимент всегда манипулирует только с интересующим объектом. Фактически и в реальном эксперименте, и в симуляции имеет место сложное отношение между тем, с чем манипулируют в исследовании, с одной стороны, и системами реального мира, которые являются целью исследования – с другой... Мендель, например, манипулировал с горохом, а интересовался изучением феномена общей наследственности" .

Компьютерный эксперимент с моделью системы при ее исследовании и проектировании проводится с целью получения информации о характеристиках процесса функционирования рассматриваемого объекта. Основная задача планирования компьютерных экспериментов – получение необходимой информации об исследуемой системе при ограничениях на ресурсы (затраты машинного времени, памяти и т. п.). К числу частных задач, решаемых при планировании компьютерных экспериментов, относятся задачи уменьшения затрат машинного времени на моделирование, увеличения точности и достоверности результатов моделирования, проверки адекватности модели и т. д.

Эффективность компьютерных экспериментов с моделями существенно зависит от выбора плана эксперимента, так как именно план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы. Поэтому основная задача планирования компьютерных экспериментов с моделью формулируется следующим образом: необходимо получить информацию об объекте моделирования, заданном в виде моделирующего алгоритма (программы), при минимальных или ограниченных затратах машинных ресурсов на реализацию процесса моделирования.

Преимуществом компьютерных экспериментов перед натурным является возможность полного воспроизведения условий эксперимента с моделью исследуемой системы. Существенным достоинством перед натурными является простота прерывания и возобновления компьютерных экспериментов, что позволяет применять последовательные и эвристические приемы планирования, которые могут оказаться нереализуемыми в экспериментах с реальными объектами. При работе с компьютерной моделью всегда возможно прерывание эксперимента на время, необходимое для анализа результатов и принятия решений об его дальнейшем ходе (например, о необходимости изменения значений характеристик модели).

Недостатком компьютерных экспериментов является то, что результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому в них содержится меньше информации, чем в независимых наблюдениях.

Применительно к базе данных компьютерный эксперимент означает манипулирование данными в соответствии с поставленной целью с помощью инструментов СУБД. Цель эксперимента может быть сформирована на основании общей цели моделирования и с учетом требований конкретного пользователя. Например, имеется база данных «Деканат». Общая цель создания этой модели – управление учебным процессом. При необходимости получения сведений об успеваемости студентов можно сделать запрос, т.е. осуществить эксперимент для выборки нужной информации.

Инструментарий среды СУБД позволяет выполнять следующие операции над данными:

1) сортировка – упорядочение данных по какому–либо признаку;

2) поиск (фильтрация) – выбор данных, удовлетворяющих некоторому условию;

3) создание расчетных полей – преобразование данных в другой вид на основании формул.

Управление информационной моделью неразрывно связано с разработкой различных критериев поиска и сортировки данных. В отличие от бумажных картотек, где сортировка возможна по одному–двум критериям, а поиск вообще проводится вручную – перебором карточек, компьютерные базы данных позволяют задавать любые формы сортировки по различным полям и разнообразные критерии поиска. Компьютер без временных затрат по заданному критерию отсортирует или выберет нужную информацию.

Для успешной работы с информационной моделью программные среды баз данных позволяют создавать расчетные поля, в которых исходная информация преобразуется в другой вид. Например, по оценкам в семестре с помощью специальной встроенной функции можно рассчитать средний балл успеваемости студента. Такие расчетные поля используются либо как дополнительная информация, либо как критерий для поиска и сортировки.

Компьютерный эксперимент включает две стадии: тестирование (проверка правильности выполнения операций) и проведение эксперимента с реальными данными.

После составления формул для расчетных полей и фильтров необходимо убедиться в правильности их работы. Для этого можно ввести тестовые записи, для которых заранее известен результат операции.

Компьютерный эксперимент завершается выдачей результатов в удобном для анализа и принятия решения виде. Одно из преимуществ компьютерных информационных моделей – возможность создания различных форм представления выходной информации, называемых отчетами. Каждый отчет содержит информацию, отвечающую цели конкретного эксперимента. Удобство компьютерных отчетов заключается в том, что они позволяют сгруппировать информацию по заданным признакам, ввести итоговые поля подсчета записей по группам и в целом по всей базе и в дальнейшем использовать эту информацию для принятия решения.

Среда позволяет создать и хранить несколько типовых, часто используемых форм отчетов. По результатам некоторых экспериментов можно создать временный отчет, который удаляется после копирования его в текстовый документ или распечатки. Некоторые эксперименты вообще не требуют составления отчета. Например, требуется выбрать самого успевающего студента для присвоения повышенной стипендии. Для этого достаточно провести сортировку по среднему баллу оценок в семестре. Искомую информацию будет содержать первая запись в списке студентов.

У современного компьютера много направлений исполь­зования. Среди них, как вы знаете, особое значение имеют возможности компьютера как средства автоматизации ин­формационных процессов. Но не менее значимы и его воз­можности как инструмента проведения эксперименталь­ной работы и анализа ее результатов.

Вычислительный эксперимент давно известен в науке. Вспомните открытие планеты Нептун «на кончике пера». Нередко результаты научных исследований считаются до­стоверными, только если они могут быть представлены в виде математических моделей и подтверждены математиче­скими расчетами. Причем, относится это не только к физике


или техническому конструированию, но и к социологии, лингвистике, маркетингу - традиционно гуманитарным дисциплинам, далеким от математики.

Вычислительный эксперимент является теоретическим методом познания. Развитием этого метода является чис­ленное моделирование - сравнительно новый научный ме­тод, получивший широкое распространение благодаря появ­лению ЭВМ.

Численное моделирование широко используется и на практике, и при проведении научных исследований.

Пример. Без построения математических моделей и проведения самых разных расчетов над постоянно изменяющимися данными, поступающими с измерительных приборов, невозможна работа автоматических производственных линий, автопилотов, станций слежения, систем автома­тической диагностики. Причем для обеспечения надеж­ности систем расчеты должны проводиться в режиме ре­ального времени, а их погрешности могут составлять миллионные доли процента.

Пример. Современного астронома чаще можно увидеть не у оку­ляра телескопа, а перед дисплеем компьютера. Причем не только теоретика, но и наблюдателя. Астрономия - необычная наука. Она, как правило, не может непосред­ственно экспериментировать с объектами исследований. Различные виды излучения (электромагнитное, гравита­ционное, потоки нейтрино или космических лучей) аст­рономы только «подсматривают» и «подслушивают». Значит, нужно научиться извлекать максимум информа­ции из наблюдений и воспроизводить их в расчетах для проверки гипотез, описывающих эти наблюдения. При­менения компьютеров в астрономии, как и в других нау­ках чрезвычайно разнообразны. Это и автоматизация на­блюдений, и обработка их результатов (астрономы видят изображения не в окуляре, а на мониторе, соединенным со специальными приборами). Компьютеры также необ­ходимы для работы с большими каталогами (звезд, спек-тальных анализов, химических соединений и пр.).

Пример. Всем известно выражение «буря в стакане воды». Чтобы детально исследовать такой сложный гидродинамиче­ский процесс, как буря, необходимо привлекать слож­ные методы численного моделирования. Поэтому в круп­ных гидрометеоцентрах находятся мощные компьюте­ры: «буря разыгрывается» в кристалле процессора компьютера.


Даже если вы проводите не очень сложные вычисления, но вам нужно повторить их миллион раз, то лучше один раз написать программу, а компьютер повторит ее столько раз, сколько это нужно (ограничением, естественно, будет быст­родействие компьютера).

Численное моделирование может быть самостоятельным методом исследования, когда интерес представляют только значения каких-то показателей (например, себестоимости продукции или интегрального спектра галактики), но чаще оно выступает одним из средств построения компьютерных моделей в более широком смысле этого термина.

Исторически сложилось так, что первые работы по компьютерному моделированию были связаны с физикой, где с помощью численного моделирования решался целый класс задач гидравлики, фильтрации, теплопереноса и теп­лообмена, механики твердого тела и т. п. Моделирование, в основном, представляло собой решение сложных нелиней­ных задач математической физики и по существу было, ко­нечно, моделированием математическим. Успехи математи­ческого моделирования в физике способствовали распро­странению его на задачи химии, электроэнергетики, биоло­гии, причем схемы моделирования не слишком отличались друг от друга. Сложность решаемых на основе моделирова­ния задач ограничивалась лишь мощностью имеющихся ЭВМ. Данный вид моделирования широко распространен и в настоящеее время. Более того, за время развития численно­го моделирования накоплены целые библиотеки подпрог­рамм и функций, облегчающих применение и расширяю­щих возможности моделирования. И все же в настоящее время понятие «компьютерное моделирование» обычно свя­зывают не с фундаментальными естественно-научными дис­циплинами, а в первую очередь с системным анализом сложных систем с позиций кибернетики (то есть с позиций управления, самоуправления, самоорганизации). И сейчас компьютерное моделирование широко используется в биоло­гии, макроэкономике, при создании автоматизированных систем управления и пр.

Пример. Вспомните эксперимент Пиаже, описанный в предыду­щем параграфе. Его, конечно же можно было бы провес­ти не с реальными предметами, а с анимационным изоб­ражением на экране дисплея. Но ведь движение игрушек можно было бы заснять на обычную киноплен­ку и демонстрировать ее по телевизору. Целесообразно ли называть использование компьютера в этом случае компьютерным моделированием?


Пример. Моделью полета тела, брошенного вертикально вверх или под углом к горизонту, является, например, график высоты тела в зависимости от времени. Построить его можно

а) на листе бумаги по точкам;

б) в графическом редакторе по тем же точкам;

в) с помощью программы деловой графики, например, в
электронных таблицах;

г) написав программу, которая не только выводит на эк­
ран траекторию полета, но и позволяет задавать различ­
ные исходные данные (угол наклона, начальную ско­
рость).

Почему вариант б) не хочется называть компьютерной моделью, а варианты в) и г) вполне соответствуют этому названию?

Под компьютерной моделью часто понимают программу (или программу плюс специальное устройство), которая обеспечивает имитацию характеристик и поведения опреде­ленного объекта. Результат выполнения этой программы также называют компьютерной моделью.

В специальной литературе термин «компьютерная мо­дель» более строго определяется так:

Условный образ объекта или некоторой системы объектов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, гра­фиков, рисунков, анимационных фрагментов, гипертек­стов и так далее и отображающий структуру (элементы и взаимосвязи между ними) объекта. Компьютерные моде­ли такого вида называют структурно-функциональны­ми;

Отдельную программу или совокупность программ, позво­ляющих с помощью последовательности вычислений и графического отображения их результатов воспроизво­дить (имитировать) процессы функционирования объекта при условии воздействия на него различных, как правило случайных, факторов. Такие модели называют имитаци­онными.

Компьютерные модели могут быть простыми и сложны­ми. Простые модели вы неоднократно создавали, когда изу­чали программирование или строили свою базу данных. В системах трехмерной графики, экспертных системах, авто­матизированных системах управления строятся и использу­ются очень сложные компьютерные модели.


Пример. Идея построить модель деятельности человека с помо­щью компьютера не нова, и трудно найти такую область деятельности, в которой ее не пытались бы реализовать. Экспертные системы - компьютерные программы, мо­делирующие действия эксперта-человека при решении задач в какой-либо предметной области на основе накоп­ленных знаний, составляющих базу знаний. ЭС решают задачу моделирования умственной деятельности. Из-за сложности моделей разработка ЭС занимает, как прави­ло, несколько лет.

Современные экспертные системы кроме базы знаний имеют еще и базу прецедентов - например, результаты обследования реальных людей и информацию о последу­ющей успешности/неуспешности их деятельности. Для примера, база прецедентов экспертной системы Нью-Йоркской полиции - 786 000 чел., Центра «Хоб­би» (кадровая политика на предприятии) - 512 000 чел., причем по словам специалистов этого центра, раз­рабатываемая ими ЭС заработала с ожидаемой точно­стью, только когда база перевалила за 200 000 человек, на ее создание ушло 6 лет.

Пример. Прогресс в создании компьютерных графических изоб­ражений продвинулся от каркасных образов трехмерных моделей с простым полутоновым изображением до совре­менных реалистических картинок, являющихся образ­цами искусства. Это явилось результатом успеха в более точном определении среды моделирования. Прозрач­ность, отражение, тени, модели освещения и свойства поверхности - вот несколько областей, где напряженно работают группы исследователей, постоянно предлагаю­щие новые алгоритмы создания все более реалистичных искусственных образов. Сегодня эти методы применяют­ся и для создания качественной анимации.

Практические потребности в компьютерном моделирова­нии ставят задачи перед разработчиками аппаратных средств компьютера. То есть метод активно влияет не только на появление все новых и новых программ, но и на разви­тие технических средств.

Пример. Впервые о компьютерной голографии заговорили в 80-х годах. Так, в системах автоматизированного проектиро­вания, в геоинформационных системах было бы неплохо иметь возможность не просто посмотреть интересующий объект в трехмерном виде, но представить его в виде го-лограмы, которую можно повернуть, наклонить, загля­нуть внутрь нее. Чтобы создать голографическую кар­тинку, полезную в реальных приложениях, необходимы


голографической

картинки

дисплеи с гигантским количеством пикселей - до мил­лиарда. Сейчас такая работа активно ведется. Одновре­менно с разработкой голографического дисплея полным ходом идет работа по созданию трехмерной рабочей стан­ции на основе принципа, получившего название «подме­на реальности». За этим термином стоит идея широкого применения всех тех естественных и интуитивных мето­дов, которые человек использует при взаимодействии с натурными (вещественно-энергетическими) моделями, но при этом делается упор на их всестороннее улучше­ние и развитие с помощью уникальных возможностей цифровых систем. Предполагается, например, что будет возможность манипулирования и взаимодействия с компьютерными голограммами в реальном времени с по­мощью жестов и прикосновений.

Компьютерное моделирование имеет следующие преиму­щества:

Обеспечивает наглядность;

Доступно в использовании.

Основное преимущество компьютерного моделирования заключается в том, что оно позволяет не только пронаблю­дать, но и предсказать результат эксперимента при каких-то особых условиях. Благодаря этой возможности этот метод нашел применение в биологии, химии, социологии, эколо­гии, физике, экономике и многих других сферах знания.


Компьютерное моделирование широко используется в обучении. С помощью специальных программ можно по­смотреть модели таких явлений, как явления микромира и мира с астрономическими размерами, явления ядерной и квантовой физики, развитие растений и превращения ве­ществ при химических реакциях.

Подготовка специалистов многих профессий, особенно та­ких, как авиадиспетчеры, пилоты, диспетчеры атомных и электростанций, осуществляется с помощью тренажеров, управляемых компьютером, моделирующим реальные ситу­ации, в том числе аварийные.

На компьютере можно провести лабораторные работы, если нет необходимых реальных устройств и приборов или если решение задачи требует применения сложных матема­тических методов и трудоемких расчетов.

Компьютерное моделирование дает возможность «ожи­вить» изучаемые физические, химические, биологические, социальные законы, поставить с моделью ряд эксперимен­тов. Но не стоит забывать, что все эти эксперименты носят весьма условный характер и познавательная ценность их тоже весьма условна.

Пример. До практического использования реакции ядерного рас­пада физики-ядерщики просто не знали о вреде радиа­ции, но первое массовое применение «достижений» (Хи­росима и Нагасаки) четко показало, насколько радиация

с опасна для человека. Начни физики с ядерных электро-

станций, человечество долго еще не узнало бы о вреде радиации. Достижение химиков начала прошлого века -мощнейший пестицид ДДТ - достаточно долго считался абсолютно безопасным для человека-

В условиях применения мощных современных техноло­гий, широкого тиражирования и бездумного использования ошибочных программных продуктов такие узкоспециаль­ные, казалось бы, вопросы, как адекватность компьютерной модели реальности, могут приобрести весомое общечелове­ческое значение.

Компьютерные эксперименты - это инструмент ис­следования моделей, а не природных или социальных яв­лений.

Поэтому одновременно с компьютерным экспериментом всегда должен идти натурный, чтобы исследователь, сравни­вая их результаты, мог оценить качество соответствующей модели, глубину наших представлений о сути явлений при-


роды. Не стоит забывать, что физика, биология, астроно­мия, информатика это науки о реальном мире, а не о вирту­альной реальности.

В научных исследованиях, как фундаментальных так и практически направленных (прикладных), компьютер не­редко выступает как необходимый инструмент эксперимен­тальной работы.

Компьютерный эксперимент чаще всего связан:

С проведением сложных математических расчетов (чис­
ленное моделирование);

С построением и исследованием наглядных и/или дина­
мических моделей (компьютерное моделирование).

Под компьютерной моделью понимается программа (или программа в совокупности со специальным устройст­вом), которая обеспечивает имитацию характеристик и по­ведения определенного объекта, а также результат выполне­ния этой программы в виде графических изображений (неподвижных или динамических), числовых значений, таб­лиц и пр.

Различают структурно-функциональные и имитационные компьютерные модели.

Структурно-функциональная компьютерная модель - это условный образ объекта или некоторой системы объек­тов (процессов, явлений), описанный с помощью взаимосвя­занных компьютерных таблиц, блок-схем, диаграмм, графи­ков, рисунков, анимационных фрагментов, гипертекстов и так далее и отображающий структуру объекта или его пове­дение.

Имитационная компьютерная модель - это отдельная программа или программный комплекс, позволяющий с по­мощью последовательности вычислений и графического ото­бражения их результатов воспроизводить (имитировать) процессы функционирования объекта при условии воздейст­вия на него различных случайных факторов.

Компьютерное моделирование - метод решения задачи анализа или синтеза системы (чаще всего сложной системы) на основе использования ее компьютерной модели.


Преимущества компьютерного моделирования заключа­ются в том, что оно:

Позволяет не только пронаблюдать, но и предсказать ре­зультат эксперимента при каких-то особых условиях;

Позволяет моделировать и изучать явления, предсказыва­емые любыми теориями;

Является экологически чистым и не представляет опасно­сти для природы и человека;

Обеспечивает наглядность;

Доступно в использовании.

Метод компьютерного моделирования нашел применение в биологии, химии, социологии, экологии, физике, эконо­мике, лингвистике, юриспруденции и многих других сферах знания.

Компьютерное моделирование широко используется в обучении, подготовке и переподготовке специалистов:

Для наглядного представления моделей явлений микро­мира и мира с астрономическими размерами;

Для имитации процессов, происходящих в мире живой и неживой природы

Для моделирования реальных ситуаций управления сложными системами, в том числе аварийных ситуаций;

Для проведения лабораторных работ, когда нет необходи­мых устройств и приборов;

Для решения задач, если при этом требуется применение сложных математических методов и трудоемких расче­тов.

Важно помнить, что на компьютере моделируется не объ­ективная реальность, а наши теоретические представления о ней. Объектом компьютерного моделирования являются ма­тематические и другие научные модели, а не реальные объ­екты, процессы, явления.

Компьютерные эксперименты - это инструмент иссле­дования моделей, а не природных или социальных явлений.

Критерием верности любого из результатов компьютерно­го моделирования был и остается натурный (физический, химический, социальный) эксперимент. В научных и прак­тических исследованиях компьютерный эксперимент может лишь сопутствовать натурному, чтобы исследователь, срав-


нивая их результаты, мог оценить качество модели, глубину наших представлений о сути явлений природы.

Важно помнить, что физика, биология, астрономия, эко­номика, информатика - это науки о реальном мире, а не о
виртуальной реальности.

Задание 1

Письмо, написанное в текстовом редакторе и отправленное по электронной почте, вряд ли кто-нибудь назовет компьютерной моделью.

Текстовые редакторы часто позволяют создавать не только обыч­ные документы (письма, стаьи, отчеты), но и шаблоны докумен­тов, в которых есть постоянная информация, которую пользова­тель не может изменить, есть поля данных, которые заполняются пользователем, а есть поля, в которых автоматиче­ски производятся расчеты на основании введенных данных. Можно ли такой шаблон рассматривать как компьютерную мо­дель? Если да, то что в этом случае является объектом моделиро­вания и какова цель создания подобной модели?

Задание 2

Вы знаете, что перед тем, как создавать базу данных, сначала нужно построить модель данных. Вам также известно, что алго­ритм - это модель деятельности.

И модели данных и алгоритмы чаще всего разрабатываются в расчете на компьютерную реализацию. Можно ли сказать, что в какой-то момент они становятся компьютерной моделью, и если да, то когда это происходит?

Примечание. Проверьте свой ответ на соответствие определению понятия «компьютерная модель».

Задание 3

Опишите этапы построения компьютерной модели на примере разработки программы, имитирующей какое-нибудь физическое явление.

Задание 4

Приведите примеры, когда компьютерное моделирование при­несло реальную пользу и когда оно привело к нежелательным по­следствиям. Подготовьте доклад на эту тему.


Похожие публикации