Тепловое излучение и защита от него. Защита от источников тепловых излучений Меры защиты от теплового излучения

Способы защиты от лучистого тепла следующие: теплоизоляция горячих поверхностей, экранирование тепловых излучений, применение воздушного душирования, применение защитной одежды, организация рационального отдыха. Теплоизоляция является эффективным мероприятием не только по уменьшению интенсивности теплового излучения от нагретых пoверхностей, но и общих тепловыделений, а также для предотвращения ожогов при прикосновении к этим поверхностям. По действующим санитарным нормам температура нагретых поверхностей оборудования (например, печей) и ограждений на рабочих местах не должна превышать 45°С.

Для теплоизоляции применяют самые разнообразные материалы и конструкции (специальные бетоны и кирпич, минеральную и стеклянную вату, асбест, войлок и т.д.).

Наиболее распространенным и эффективным способом защиты от излучения является экранирование. Экраны применяют как для экранирования источников излучения, так и для защиты рабочих мест от воздействия лучистого тепла.

По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплоотводящие. Это деление в известной степени условно, так как любой экран обладает способностью отражать, поглощать или отводить тепло. Принадлежность экрана к той или иной группе зависит от того, какое свойство отражено в нем наиболее сильно.

В зависимости от возможности наблюдения за рабочим процессом экраны можно разделить на три типа: непрозрачные, полупрозрачные и прозрачные.

Материалами для теплоотражающих экранов служат листовой алюминий, белая жесть, альфоль (алюминиевая фольга), укрепляемые на несущем материале -- картоне, сетке и т.п.

В теплопоглощающих экранах применяют материалы с большим термическим сопротивлением (асбестовые щиты на металлической сетке или листе, огнеупорный кирпич и т.д.), вследствие чего температура наружной поверхности резко уменьшается.

Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Они могут применяться при любых интенсивностях излучения.

К полупрозрачным теплопоглощающим экранам относятся металлические сетки (размер ячейки 3--3,5 мм), цепные звенья, армированное стекло. Такие экраны уступают по эффективности сплошным экранам, поэтому их применяют при интенсивности излучения менее 1000 ккал/м 2 -ч.

Металлические сетки, орошаемые водой, являются теплоотводящими экранами, применяют их также при небольших интенсивностях излучения.

Для прозрачных экранов используют силикатное, кварцевое или органические стекло, тонкие (до 2 нм) металлические пленки на стекле.

Наибольшее распространение получили водяные завесы, устраиваемые у рабочих окон печей в том случае, когда через экран необходимо вводить инструмент, заготовки и т.д.

При выполнении трудоемких работ правильная организация отдыха имеет большое значение для восстановления работоспособности. Для рабочих устраивают специальные места отдыха, расположенные недалеко от места работы, но, в то же время, достаточно удаленные от источников излучения снабженные вентиляцией, питьевой водой и т.д.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т.е. при соприкосновении с поверхностями нагретых тел. Превышение температуры воздуха в помещении выше оптимальной вызывает нарушение нормальной терморегуляции организма и может быть причиной расстройства сердечно-сосудистой системы. В ряде случаев возможно внезапное заболевание, называемое тепловым ударом.

Санитарные нормы допускают воздействие теплоты излучения на организм работающих в количестве не более 1,25 МДж/(м 2 *ч).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100°С, температура на поверхности не должна превышать 35°С.

Для защиты людей от вредного воздействия теплового излучения и высоких температур применяют теплоизоляцию горячих поверхностей, например путем обмазки наружных поверхностей котлов и трубопроводов горячей воды каким-либо строительным раствором с наполнителем в виде стекловаты или асбеста. Общей защитой от излучения могут служить экраны из малотеплопроводных материалов (асбест, шифер), а в качестве средств индивидуальной защиты применяются спецодежда (брезентовые или суконные костюмы), очки со светофильтрами, щитки из органического стекла и др.

В горячих цехах существенную роль играет снабжение рабочих питьевой подсоленной или газированной водой, употребление которой улучшает водный баланс организма.

3. Меры и средства индивидуальной защиты от тепловых излучений

Для снижения опасности воздействия тепловых излучений используют следующие способы:

· уменьшение интенсивности излучения источника,

· защитное экранирование источника или рабочего места,

· воздушное душирование,

· применение средств индивидуальной защиты,

· организационные и лечебно-профилактические мероприятия.

Нормирование параметров и организационные меры

Прежде чем реализовывать в горячих цехах те или иные способы защиты необходимо знать, до каких значений рекомендуют снизить параметры микроклимата на рабочих местах врачи-гигиенисты или позволяет сделать это современный уровень развития техники. Эти данные приведены, как известно, в нормативно-технической документации.

Допустимая интенсивность теплового облучения с д работающих от нагретых поверхностей технологического оборудования (на постоянных и непостоянных рабочих местах) зависит от величины облучаемой поверхности тела человека S, %, (значения согласно ГОСТ 12.1.005--88 приведены в таблице 2.)

Таблица 2. Допустимая интенсивность теплового облучения

Интенсивность теплового облучения работающих открытыми источниками (нагретым металлом, "открытым пламенем" и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела при обязательном использовании средств индивидуальной защиты.

При наличии теплового облучения температура воздуха на постоянных рабочих местах не должна превышать указанные в ГОСТ 12.1.005--88 верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах -- верхние допустимые значения для постоянных рабочих мест.

Температура нагретых поверхностей оборудования (например, печей), по оценкам гигиенистов, не рекомендуется более 35 °С. По действующим санитарным нормам (СН 245--71) температура нагретых поверхностей и ограждений на рабочих местах не должна превышать 45 °С, а температура на поверхности оборудования, внутри которого t < 100 °С, не должна превышать 35 °С.

При невозможности по техническим причинам достигнуть указанных температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева:

· водовоздушное душирование,

· высокодисперсное распыление воды на облучаемые поверхности и кабины,

· помещения для отдыха и др.

Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их, частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты

Технические меры защиты от тепловых излучений:

· механизация, автоматизация и дистанционное управление и наблюдение за производственными процессами,

· тепловая изоляция и герметичность печей,

· экранирование печей и рабочих мест.

Совершенствование способов и технологии производства сталей и цветных металлов (например, замена мартеновского производства конвертерным), применение средств автоматизации и вычислительной техники в металлургии позволяет резко сократить количество рабочих мест вблизи мощных источников тепловых излучений.

Снижение интенсивности теплового излучения источника обеспечивается заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, обеспечивающей минимальную площадь нагретых поверхностей.

Тепловая изоляция поверхностей источников излучения (печей, ковшей, трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Тепловая изоляция, уменьшая тепловые потери оборудования, обуславливает сокращение расхода топлива (электроэнергии).

Наиболее распространенным и эффективным способом защиты от теплового излучении является экранирование. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей.

Цели экранирования -- снижение температуры наружного ограждения теплового источника и локализация его тепловыделений (рисунок 1а), защита отдельных объектов от излучения источника (рисунок 1б) -- теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций.

Рисунок 1. Расчетные схемы экранирования:

а - локализация источника; б - защита от внешнего источника

Если экранирование снижает поток излучения Q 12 в т раз, то температура наружной поверхности экрана Т э будет в м раз меньше температуры поверхности источника Т 1 , т.е. м = T 1 /T э.

Качество экранирования характеризует коэффициент эффективности экрана:

з = 1 - = , где

Q 12 - поток излучения от источника;

Q э2 - поток излучения от экрана.

Для достижения заданной температуры экрана Тэ=Т 1 /м?35 о С необходимо n экранов, количество которых рассчитывается по формуле:

n = (/[м -4 - () 4 ]) - 1

Конструкция экрана должна обеспечивать свободный восходящий поток воздуха в межэкранном пространстве, чтобы максимально использовать охлаждающее действие конвективных потоков.

По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на:

· непрозрачные,

· полупрозрачные,

· прозрачные.

В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны подразделяются на:

· теплоотражающие,

· теплопоглощающие,

· теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла, металла (змеевики) и др.

В таблице 3 отражены виды защитных экранов от теплового излучения.

Таблица 3 - Виды защитных экранов от теплового излучения

По принципу действия

По конструкции и возможности наблюдения за технологическим процессом

Непрозрачные

Полупрозрачные

Прозрачные

Теплопоглощающие

Материалы с большим термическим сопротивлением;

Используют при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Металлические сетки, цепные завесы, армированное стальной сеткой стекло

Разные стекла (силикатные, органические, кварцевые), тонкие металлические пленки, осажденные на стекле

Теплоотводящие

Сварные или литые конструкции, охлаждаемые протекающей внутри водой;

Практически теплонепроницаемы

Металлические сетки, орошаемые водяной пленкой

Водяные завесы у рабочих окон печей, водяная пленка, стекающая по стеклу.

Теплоотражающие

Материал: листовой алюминий, белая жесть, алюминиевая фольга;

Достоинства: высокая эффективность, малая масса, экономичность;

Недостатки: нестойкость к высоким температурам, механическим воздействиям

Пульты управления (или кабины) должны удовлетворять следующим требованиям:

· объем кабины оператора > 3 м 3 ;

· стены, пол и потолок оборудованы теплозащитными ограждениями;

· площадь остекления достаточна для наблюдения за технологическим процессом и минимальна для уменьшения поступления теплоты.

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с. Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10-15 м/с) под некоторым углом навстречу холодному потоку. Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2).

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда -- широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудновоспламеняемых, прозрачных и воздухопроницаемых материалов: сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме необходимо обеспечить питьевой режим.

Заключение

В заключении, можно сделать вывод о том, что снижение теплоизлучений является основной задачей для обеспечения нормальных условий труда металлургов, т.к., например, ИК излучение, которое способно проникать в ткани человеческого тела приводят к повышению температуры кожи и лежащих глубже тканей. При коротковолновом излучении повышается температура легких, головного мозга, почек и т.п., может появиться инфракрасная катаракта.

К основным мерам защиты от тепловых излучений можно отнести следующие: уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия, технические меры защиты (дистанционное управление и наблюдение, тепловая изоляция и герметичность печей, экранирование печей и рабочих мест).

Особое внимание уделяется экранированию целью, которого, является снижение температуры наружного ограждения теплового источника и локализация его тепловыделений, защита отдельных объектов от излучения источника -- теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций. В свою очередь экраны по конструкции и возможности наблюдения за технологическим процессом можно разделить на непрозрачные, полупрозрачные, прозрачные, а по принципу действия на теплоотражающие, теплопоглощающие и теплоотводящие.

Таким образом, защита от тепловых излучений должна производиться на каждом предприятии, где возможно нахождение таких источников излучения во избежание неблагоприятных последствий для здоровья работающих.

безопасность жизнедеятельность защита шум Спецодежда в горячих цехах должна быть малотеплопроводной, влагонепроницаемой и невоспламеняющейся. Этими свойствами в большой степени обладает сукно шинельного типа...

Безопасность технологических процессов и производств

Способы борьбы с шумом различны. Основным из них является уменьшение шума в источнике. Этого можно достичь изменением технологического процесса или конструкции машины, механизма, инструмента. Например...

Действия населения в зонах радиоактивного загрязнения

Применение противогазов, респираторов, противопыльных тканевых масок и ватно-марлевых повязок в значительной степени снизит (исключит) попадание радиоактивных веществ внутрь организма через органы дыхания...

Защита от тепловых излучений

К числу горячих цехов с терморадиационным режимом (преобладает лучистый теплообмен) относятся доменные, сталеплавильные и прокатные цехи заводов черной металлургии...

Защита от тепловых излучений

тепловое излучение организм защита Терморадиационный режим в горячих цехах характеризуется облученностью от стационарных и подвижных источников. Рассеянное излучение от первичных и вторичных источников создает фоновую облученность...

Индивидуальные средства защиты работников

Индивидуальные средства защиты. Тушение пожаров

Основные принципы радиационной безопасности заключаются в не превышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня...

Обеспечение требований безопасности при производстве рыбы горячего копчения

Средства индивидуальной защиты (СИЗ) предназначены для защиты одного работника. СИЗ применяют в случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов...

Основы охраны труда при производстве гипсокартонных листов

Согласно законодательным правилам РФ рабочие, занятые на угрожающем состоянию организма производстве, обязательно должны иметь в распоряжении средства индивидуальной защиты. Основная задача...

Основы физиологии и гигиены труда

В производственных условиях не всегда возможно ликвидировать опасные и вредные выделения или полностью исключить аварии. Поэтому большое значение приобретают средства индивидуальной защиты...

Радиоактивное загрязнение пищевых продуктов

Разработка мероприятий по улучшению условий труда в ремонтно-механическом цехе на рабочем месте слесаря автомобилей

На основании Приказа Минздравсоцразвития России от 01.06.2009 N 290н (ред. от 12.01.2015) "Об утверждении Межотраслевых правил обеспечения работников специальной одеждой...

Средства индивидуальной защиты

На работах с вредными условиями труда, а также на работах, производимых в особых температурных условиях или связанных с загрязнением, работникам выдаются бесплатно спецодежда, спецобувь и другие средства индивидуальной защиты...

Средства индивидуальной защиты и безопасность производственной деятельности

Средства индивидуальной защиты (СИЗ) предназначены для сохранения боеспособности личного состава и обеспечения выполнения боевой задачи в условиях применения противником оружия массового поражения...

Травматизм и несчастные случаи при проведении высотных работ в строительстве на объектах предприятия ООО "Газпром трансгаз Ухта"

В соответствии со статьями 212 и 219 Трудового Кодекса Российской Федерации работникам предприятия, занятым на работах с вредными или опасными условиями труда, а также на работах...

Введение

Источники и характеристики тепловых излучений

Воздействие на организм тепловых излучений

3. Меры и средства индивидуальной защиты от тепловых излучений



Введение

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т.е. при соприкосновении с поверхностями нагретых тел. Превышение температуры воздуха в помещении выше оптимальной вызывает нарушение нормальной терморегуляции организма и может быть причиной расстройства сердечно-сосудистой системы.

Прогресс в металлургии связан с интенсификацией процессов, укрупнением агрегатов, увеличением их тепловой мощности, что приводит к увеличению избыточных тепловыделений в горячих цехах. Теплонапряженность этих помещений составляет 290-350 Вт/м3, но уже при 23 Вт/м3 цех, согласно СН 245-71, считается горячим.

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с t > 33 °С) и окружающими предметами (эта стадия в металлургических цехах отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного), между нагретыми облучением телами и воздухом (в этой стадии преобладает конвекция). При температуре источников тепловыделений более 50 °С, что характерно для металлургии, в теплообмене преобладает излучение. Поэтому для обеспечения нормальных условий труда металлургов снижение теплоизлучений является основной задачей.

1. Источники и характеристики тепловых излучений

К числу горячих цехов с терморадиационным режимом (преобладает лучистый теплообмен) относятся доменные, сталеплавильные и прокатные цехи заводов черной металлургии, электролизные цехи алюминиевых заводов и плавильные цехи заводов цветной металлургии, кузнечно-прессовые и литейные цехи машиностроительных предприятий. Пространство горячего цеха заполнено излучением от стационарных агрегатов и подвижных источников: ковшей с металлом, заготовок и изделий.

Каждый источник теплоты создает в пространстве поле излучения, независимое от взаимного положения источников. Поля излучений, распространяясь в пространстве, накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом, она превращается в тепловую в поверхностных слоях облучаемого тела.

Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит, в первую очередь, от температуры источника. Энергия тепловых излучений металлургических источников располагается главным образом в инфракрасном диапазоне спектра.

Производственные источники лучистого тепла по характеру излучения можно разделить на 4 группы:

Источники с температурой поверхности до 500 °С (паропроводы, наружная поверхность нагревательных, плавильных, обжиговых печей, сушил, парогенераторов и водогрейных котлов, выпарных аппаратов, теплообменников и др.). Их спектр содержит исключительно длинные инфракрасные лучи с длиной волны l =3,7¸9,3 мкм.

Поверхности с температурой t = 500 ¸ 1200 °С (внутренние поверхности печей, горнов, топок парогенераторов, расплавленные шлаки и металл и др.) Их спектр содержит преимущественно длинные инфракрасные лучи, но появляются и видимые лучи.

Поверхности с t = 1200 ¸ 1800 °С (расплавленный металл и шлаки, пламя, разогретые электроды и др.) Их спектр - инфракрасные лучи вплоть до наиболее коротких, а также видимые, которые могут достигать высокой яркости.

Источники с t > 1800 °С (дуговые печи, сварочные аппараты и др.). Их спектр излучения содержит наряду с инфракрасными и световыми лучами, ультрафиолетовые лучи.

Таблица 1. Характеристики источников излучения

Источники излучения

t, о С, излучения

λ,мкм, ИК излучения

Спектральная характеристика излучения

Наружные поверхности печей, остывающие изделия

ИК (Е ик =100%)

Внутренние поверхности печей, пламя, нагретые заготовки

ИК,В (Е в < 0,1%)

Расплавленный металл, разогретые электроды

ИК,В (Е в < 1%)

Пламя дуговых печей, сварочные аппараты

ИК, В, УФ (Е уф < 0,1%)


Интенсивность теплового излучения зависит от температуры и площади источника и степени черноты его поверхности. Для рассмотрения аналитических зависимостей по лучистому теплообмену обратимся к законам теплового излучения.

При теплообмене излучением между двумя а.ч.т. с температурами Т 1 и Т 2 тепловой поток, Вт, рассчитывается по формуле:

Q = С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 φ 12 , где

Т 1 ,Т 2 - температуры тел 1 и 2 соответственно, К; 1 - площадь поверхности тела 1;

φ 12 = 0÷1 - коэффициент облученности, который показывает, какая часть лучистого потока, излучаемого телом 1, попадает на тело 2 (φ 12 часто определяют по графикам).

Тепловой поток при теплообмене между серыми телами:

Q = ε пр С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 φ 12 , где

ε пр = (ε 1 -1 + ε 2 -1 -1) -1 - приведенная степень черноты серых тел.

Плотность теплового потока на расстоянии l от точечного источника обратно пропорциональна квадрату расстояния: q = Q/ l 2 .

Воздействие на организм тепловых излучений

тепловое излучение организм защита

Терморадиационный режим в горячих цехах характеризуется облученностью от стационарных и подвижных источников.

Рассеянное излучение от первичных и вторичных источников создает фоновую облученность. Абсолютное количество тепловыделений подвижных источников при формировании терморадиационного режима цеха невелико, но эти источники оказывают значительное влияние на отдельные рабочие места.

Интенсивность теплового облучения рассчитывают на основании уравнений для Q и ε пр, имея в виду, что Т 1 и ε 1, Т 2 и ε 2 - соответственно температура и степень черноты источника, кожи и одежды человека. Интенсивность облучения человека, Вт/м 2 , от нагретой поверхности рекомендуется определять по формуле:

ρ = ε пр С о [(Т/100) 4 - А]соsα, где

ε пр - приведенная степень черноты серых тел;

С о = 5,67 Вт/(м 2 *К 4) - коэффициент излучения а.ч.т.;

Т - температура источника, К;

А = 85 (при t 2 = 31 °С) - для кожи и хлопчатобумажной ткани,

А = 110 (при U = 51 о С) - для сукна;

α - угол между нормалью к излучающей поверхности и направлением от ее центра к рабочему месту,

cosα - поправка на смещение работающего от линии, перпендикулярной к центру излучающей поверхности.

Часто этот расчет затруднен ввиду сложности определения коэффициента облученности φ и приведенной степени черноты ε пр. Если человек находится вблизи большой, по сравнению с его размерами излучающей поверхности F, то φ = 1, а интенсивность облучения ρ не зависит от расстояния l от источника. Если, излучающая поверхность невелика, интенсивность облучений обратно пропорциональна расстоянию или его квадрату (l 2). Поэтому выражение для расчета интенсивности облучения от нагретой поверхности или через отверстие в печи для практических расчетов можно преобразовать:

ρ = 0,91[(Т/100) 4 - А] F/ l 2 , при l >

ρ = 0,91[(Т/100) 4 - А] , при l ∠

Если рабочее место смещено от нормали к центру излучающей поверхности, необходимо ввести поправку, равную косинусу угла смещения. В некоторых справочниках принято А = 90 (при t 2 = 35 о С).

Чтобы оценить воздействие теплового облучения на организм в работающих горячих цехах, необходимо учесть, что интенсивность облучения разных участков тела человека на рабочем месте изменяется в течение смены или цикла технологического процесса. Поэтому энергия, Дж, поглощенная поверхностью тела человека, определяется по формуле:

Е = , где

Таким образом, степень воздействия тепловых излучений на организм человека зависит от интенсивности и времени облучения, размеров облучаемой поверхности. В формулу для ρ заложена зависимость интенсивности облучения от вида одежды (коэффициент А) и спектрального состава облучения (через температуру источника). В производственных условиях тепловое излучение имеет длины волн λ = 0,1÷440 мкм, в горячих цехах λ < 10 мкм.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечнососудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

судорожная болезнь, вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

катаракта (помутнение кристалликов) - профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюнктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.

Меры и средства индивидуальной защиты от тепловых излучений

Для снижения опасности воздействия тепловых излучений используют следующие способы:

· уменьшение интенсивности излучения источника,

· защитное экранирование источника или рабочего места,

· воздушное душирование,

· применение средств индивидуальной защиты,

· организационные и лечебно-профилактические мероприятия.

Нормирование параметров и организационные меры

Прежде чем реализовывать в горячих цехах те или иные способы защиты необходимо знать, до каких значений рекомендуют снизить параметры микроклимата на рабочих местах врачи-гигиенисты или позволяет сделать это современный уровень развития техники. Эти данные приведены, как известно, в нормативно-технической документации.

Допустимая интенсивность теплового облучения ρ д работающих от нагретых поверхностей технологического оборудования (на постоянных и непостоянных рабочих местах) зависит от величины облучаемой поверхности тела человека S, %, (значения согласно ГОСТ 12.1.005-88 приведены в таблице 2.)

Таблица 2. Допустимая интенсивность теплового облучения


Интенсивность теплового облучения работающих открытыми источниками (нагретым металлом, "открытым пламенем" и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела при обязательном использовании средств индивидуальной защиты.

При наличии теплового облучения температура воздуха на постоянных рабочих местах не должна превышать указанные в ГОСТ 12.1.005-88 верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах - верхние допустимые значения для постоянных рабочих мест.

Температура нагретых поверхностей оборудования (например, печей), по оценкам гигиенистов, не рекомендуется более 35 °С. По действующим санитарным нормам (СН 245-71) температура нагретых поверхностей и ограждений на рабочих местах не должна превышать 45 °С, а температура на поверхности оборудования, внутри которого t < 100 °С, не должна превышать 35 °С.

При невозможности по техническим причинам достигнуть указанных температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева:

· водовоздушное душирование,

· высокодисперсное распыление воды на облучаемые поверхности и кабины,

· помещения для отдыха и др.

Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их, частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты

Технические меры защиты от тепловых излучений:

· механизация, автоматизация и дистанционное управление и наблюдение за производственными процессами,

· тепловая изоляция и герметичность печей,

· экранирование печей и рабочих мест.

Совершенствование способов и технологии производства сталей и цветных металлов (например, замена мартеновского производства конвертерным), применение средств автоматизации и вычислительной техники в металлургии позволяет резко сократить количество рабочих мест вблизи мощных источников тепловых излучений.

Снижение интенсивности теплового излучения источника обеспечивается заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, обеспечивающей минимальную площадь нагретых поверхностей.

Тепловая изоляция поверхностей источников излучения (печей, ковшей, трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Тепловая изоляция, уменьшая тепловые потери оборудования, обуславливает сокращение расхода топлива (электроэнергии).

Наиболее распространенным и эффективным способом защиты от теплового излучении является экранирование. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей.

Цели экранирования - снижение температуры наружного ограждения теплового источника и локализация его тепловыделений (рисунок 1а), защита отдельных объектов от излучения источника (рисунок 1б) - теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций.

Рисунок 1. Расчетные схемы экранирования:

а - локализация источника; б - защита от внешнего источника

Если экранирование снижает поток излучения Q 12 в т раз, то температура наружной поверхности экрана Т э будет в μ раз меньше температуры поверхности источника Т 1 , т.е. μ = T 1 /T э.

Качество экранирования характеризует коэффициент эффективности экрана:

η = 1 - = , где

12 - поток излучения от источника; э2 - поток излучения от экрана.

Для достижения заданной температуры экрана Тэ=Т 1 /μ ∠35 о С необходимо n экранов, количество которых рассчитывается по формуле:

= (/[μ -4 - () 4 ]) - 1

Конструкция экрана должна обеспечивать свободный восходящий поток воздуха в межэкранном пространстве, чтобы максимально использовать охлаждающее действие конвективных потоков.

По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на:

· непрозрачные,

· полупрозрачные,

· прозрачные.

В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны подразделяются на:

· теплоотражающие,

· теплопоглощающие,

· теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В таблице 3 отражены виды защитных экранов от теплового излучения.

Таблица 3 - Виды защитных экранов от теплового излучения

По принципу действия

По конструкции и возможности наблюдения за технологическим процессом


Непрозрачные

Полупрозрачные

Прозрачные

Теплопоглощающие

Материалы с большим термическим сопротивлением; Используют при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Металлические сетки, цепные завесы, армированное стальной сеткой стекло

Разные стекла (силикатные, органические, кварцевые), тонкие металлические пленки, осажденные на стекле

Теплоотводящие

Сварные или литые конструкции, охлаждаемые протекающей внутри водой; Практически теплонепроницаемы

Металлические сетки, орошаемые водяной пленкой

Водяные завесы у рабочих окон печей, водяная пленка, стекающая по стеклу.

Теплоотражающие

Материал: листовой алюминий, белая жесть, алюминиевая фольга; Достоинства: высокая эффективность, малая масса, экономичность; Недостатки: нестойкость к высоким температурам, механическим воздействиям


Пульты управления (или кабины) должны удовлетворять следующим требованиям:

· объем кабины оператора > 3 м 3 ;

· стены, пол и потолок оборудованы теплозащитными ограждениями;

· площадь остекления достаточна для наблюдения за технологическим процессом и минимальна для уменьшения поступления теплоты.

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с. Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10-15 м/с) под некоторым углом навстречу холодному потоку. Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2).

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда - широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудновоспламеняемых, прозрачных и воздухопроницаемых материалов: сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме необходимо обеспечить питьевой режим.

Заключение

В заключении, можно сделать вывод о том, что снижение теплоизлучений является основной задачей для обеспечения нормальных условий труда металлургов, т.к., например, ИК излучение, которое способно проникать в ткани человеческого тела приводят к повышению температуры кожи и лежащих глубже тканей. При коротковолновом излучении повышается температура легких, головного мозга, почек и т.п., может появиться инфракрасная катаракта.

К основным мерам защиты от тепловых излучений можно отнести следующие: уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия, технические меры защиты (дистанционное управление и наблюдение, тепловая изоляция и герметичность печей, экранирование печей и рабочих мест).

Особое внимание уделяется экранированию целью, которого, является снижение температуры наружного ограждения теплового источника и локализация его тепловыделений, защита отдельных объектов от излучения источника - теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций. В свою очередь экраны по конструкции и возможности наблюдения за технологическим процессом можно разделить на непрозрачные, полупрозрачные, прозрачные, а по принципу действия на теплоотражающие, теплопоглощающие и теплоотводящие.

Таким образом, защита от тепловых излучений должна производиться на каждом предприятии, где возможно нахождение таких источников излучения во избежание неблагоприятных последствий для здоровья работающих.

Список используемой литературы

1. Методы и средства защиты человека от опасных и вредных производственных факторов / под ред. В.А. Трефилова. - Пермь: Изд-во Перм. Гос. Техн. Ун-та, 2008.

Безопасность труда на производстве. Производственная санитария Справ, пособие/ Под ред. Б.М. Злобинского. М. Металлургия, 1968. 668 с.

ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования».

СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.

СН 245-71. Санитарные нормы проектирования промышленных предприятий.

Тепловыми излучениями называется процесс, при котором лучистая энергия распространяется в форме инфракрасных лучей с длиной волны до 10 мм. Источниками тепловых излучений являются все нагретые тела.

В условиях производства источниками тепловых излучений могут быть наружные стенки котлов, горячих теплопроводов, машин, проводников электросетей, электрических машин и аппаратов, нагревательных приборов и др. Источниками инфракрасных лучей являются расплавленные и раскаленные металлы и другие вещества.

Выделение тепла в воздух помещения оценивают количеством его (ккал/ч, Дж/ч) на 1 м 3 строительного объема здания.

Лучистая тепловая энергия воздухом почти не поглощается, а передается от более нагретых тел к поверхности менее нагретых, повышая их температуру. Сам же воздух нагревается от нагретых тел путем конвекции.

Нормальной температурой воздуха в производственном помещении считается температура порядка 20° С. При этой температуре в организме человека наилучшим образом осуществляется терморегуляция, т.е. поддержание постоянной температуры тела на уровне около 37° С.

Относительная влажность воздуха определяется как отношение содержания водяных паров в 1 м 3 воздуха к их максимально возможному содержанию в процентах при определенной температуре. Влажность воздуха в значительной мере влияет на теплообмен организма человека, главным образом на отдачу тепла испарением.

Подвижность воздуха , определяется скоростью его движения, влияет на охлаждение человека при температуре воздуха до 35-36° С, т.е. более низкой, чем температура тела. В случае же более высокой температуры воздуха, например 40° С, при большей его подвижности вместо охлаждения происходит внешний подогрев тела, а для охлаждения его требуется, чтобы происходило испарение, следовательно, происходит потеря влаги организмом.

При значительном перегреве организма возникает опасное заболевание, характеризуемое нарушение работы сердечнососудистой системы. Такое внезапное заболевание, называется также тепловым ударом, в тяжелых случаях может быть смертельным. Поэтому санитарными нормами проектирования регламентированы параметры благоприятного микроклимата в производственных помещения. Так, например, наилучшим (комфортным) условиям для организма человека при неподвижном воздухе соответствует температура 25° С при влажности 60 %.

В зависимости от наличия в помещении источников тепла и опасности перегрева для поддержания нормального микроклимата применяется вентиляция или более совершенное средство –кондиционирование воздуха, т.е, подача в помещение очищенного от пли и примесей воздуха с определенными температурой и влажностью. Следует отметить, что вентиляция и кондиционирование воздуха не защищают организм от тепловых лучей, которые проходят через воздух почти беспрепятственно. Защита от лучистого тепла может осуществляться путем устранения источников тепловых лучей и при помощи защиты людей от их действия экранами из малотеплопроводных материалов (асбест, шифер). Индивидуальная защита осуществляется применением спецодежды и защитных средств (брезентовые или суконные костюмы, очки со светофильтрами, щитки из органического стекла и др.).

В горячих цехах важную роль играет снабжение рабочих питьевой подсоленной или газированной водой, что улучшает водный баланс организма.

Цель работы – практическое ознакомление с теорией теплового (инфракрасного) излучения, физической сущностью и инженерным расчетом теплоизоляции

Тепловым излучением называется процесс, при котором лучистая энергия распространяется в форме инфракрасных лучей с длиной волны до 10 мм. Источниками тепловых излучений являются все нагретые тела.

В условиях производства источниками тепловых излучений могут быть наружные стенки котлов, горячих теплопроводов, машин, проводников электросетей, электрических машин и аппаратов, нагревательных приборов и др. Источниками инфракрасных лучей являются расплавленные и раскаленные металлы и другие вещества.

Выделение тепла в воздух помещения оценивают количеством его (ккал/ч, Дж/ч) на 1 м 3 строительного объема здания.

Лучистая тепловая энергия воздухом почти не поглощается, а передается от более нагретых тел к поверхности менее нагретых, повышая их температуру. Сам же воздух нагревается от нагретых тел путем конвекции.

Нормальной температурой воздуха в производственном помещении считается температура порядка 20 °С. При этой температуре в организме человека наилучшим образом осуществляется терморегуляция, т.е. поддержание постоянной температуры тела на уровне около 37 °С.

При значительном перегреве организма возникает опасное заболевание, характеризуемое нарушение работы сердечнососудистой системы. Такое внезапное заболевание, называется также тепловым ударом, в тяжелых случаях может быть смертельным. Поэтому санитарными нормами проектирования регламентированы параметры благоприятного микроклимата в производственных помещения. Так, например, комфортным условиям для организма человека при неподвижном воздухе соответствует температура 25° С при влажности 60 %.

В зависимости от наличия в помещении источников тепла и опасности перегрева для поддержания нормального микроклимата применяется вентиляция или более совершенное средство - кондиционирование воздуха. Следует отметить, что вентиляция и кондиционирование воздуха не защищают организм от тепловых лучей, которые проходят через воздух почти беспрепятственно. Защита от лучистого тепла может осуществляться путем устранения источников тепловых лучей и при помощи защиты людей от их действия экранами из малотеплопроводных материалов (асбест, шифер). Индивидуальная защита осуществляется применением

спецодежды и защитных средств (брезентовые или суконные костюмы, очки со светофильтрами, щитки из органического стекла и др.).



В горячих цехах важную роль играет снабжение рабочих питьевой подсоленной или газированной водой, что улучшает водный баланс организма.

К числу мероприятий, способных ослабить вредное действие теплового излучения, относятся:

а) механизация работ, направленная на то, чтобы работники меньше подвергались тепловому облучению;

б) устройство у тепловыделяющих производственных источников цепных или водяных завес;

в) применение экранов из материалов, обладающих малой теплопроводностью;

г) осуществление аэрации горячих цехов;

д) устройство специальных комнат отдыха, а также душей, снабжение работников подсоленной газированной водой (3 г соли на 1 л воды);

е) применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах;

ж) обязательное применение специальных очков для защиты от инфракрасного излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.

Теплозащитные экраны (рис. 15) применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место. Ослабление теплового потока за экраном обусловлено его поглотительной и отражательной способностью. Кратность ослабления теплового потока т при установке п экранов со степенью черноты ε э и пренебрежимо малыми термическими сопротивлениями

определяется по формуле

где Е 1 и Е 2 - интенсивность теплового облучения на рабочем месте соответственно.

Эффективность установки теплозащитного экрана оценивается долей задержанной теплоты и определяется по формуле

Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

В свою очередь по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К первому классу относят металлические водоохлаждающие и футерованные асбестовые, альфолиевые, алюминиевые экраны. Ко второму - экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Экраны первого и второго классов могут орошаться водяной пленкой. К третьему классу относят экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного, пленочные водяные завесы, свободные и стекающие по стеклу, вододисперсные завесы.





Рис. 7. Конструктивные схемы непрозрачных теплозащитных экранов: а - экран из альфоля, уложенного рядами в воздушных прослойках; б - экран из скомканного альфоля в воздушных прослойках; в - комбинированный экран; 1 - металлический лист; 2 - слой альфоля; 3 -слой из теплоизоляционного металла; 4 - профилированный алюминиевый лист; 5-рамка.

Непрозрачные экраны. В качестве материалов для непрозрачных теплоотражающих экранов используют альфоль (алюминиевую фольгу), алюминий листовой, белую жесть, алюминиевую краску. Экран состоит из несущего каркаса, отражающей поверхности и деталей крепления к экранируемому оборудованию. Межэкранное пространство при установке нескольких простых одинарных экранов принимается обычно (по конструктивным соображениям) равным 20...25 мм. Уменьшение межэкранного пространства до 5 мм улучшает теплозащитные свойства экранов вследствие устранения конвективного теплообмена между слоями экрана.

Теплоотражающие экраны для трубопроводов изготовляются в виде квадратных коробов или полуцилиндрических скорлуп, оклеенных внутри альфолем. При температуре трубопровода выше 90 °С нужен двойной экран. Достоинством теплоотражающих экранов является высокая эффективность, малая масса, экономичность. Однако применение их ограничивается, так как они не выдерживают высоких температур и механических воздействий. Эффективность экранов ухудшается при отложении на них пыли, сажи и при окислении.

В качестве непрозрачных теплопоглощающих экранов используют металлические заслонки и щиты, футерованные огнеупорным или теплоизоляционным кирпичом, асбестовые щиты на металлической раме, сетке или листе и другие конструкции.

Непрозрачные экраны радиационного охлаждения - это сварные или литые (с замкнутым змеевиком) конструкции, охлаждаемые протекающей внутри водой. Их можно футеровать с одной стороны. Временные экраны можно изготовлять в виде металлических щитов, орошаемых водой. Футерованные теплоотводящие экраны могут применяться при любых встречающихся в практике интенсивностях облучения, нефутерованные - при интенсивностях 5... 14 кВт/м 2 , орошаемые щиты- при интенсивностях 0,7...3,5 кВт/м 2 .

Полупрозрачные экраны. Их применяют в тех случаях, когда экран не должен препятствовать наблюдению или вводу через него инструмента, материалов. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3...3,5 мкм, цепные завесы, армированное стальной сеткой стекло. Металлические сетки применяют при интенсивностях облучения до 0,35... 1,05 кВт/м 2 . Эффективность экранов из сетки зависит от количества слоев: один слой - 33...50, два слоя -

Цепные завесы применяют при интенсивностях облучения 0,7...5 кВт/м 2 . Эффективность цепной завесы равна около 70 %. Для повышения эффективности можно применять орошение завесы водяной пленкой и устраивать двойные экраны.

Армированное стальной сеткой стекло применяют для экранирования тех поверхностей кабин и пультов управления, которые должны пропускать видимый свет, но четкого различения объектов через них не требуется. Допустимая интенсивность облучения и эффективность экранов из армированного стекла такая же, как и у цепной завесы. Эффективность экрана может быть повышена орошением водяной пленкой и устройством двойного экрана.

Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водяной пленкой, или паровой завесы. Эти экраны имеют коэффициент эффективности до 75 % и применяют при интенсивностях облучения 0,7... 2,1

кВт/м 2 .Теплопоглощающие прозрачные экраны изготовляют из различ­ных бесцветных или окрашенных стекол (силикатных, кварцевых, органических). Для повышения эффективности применяют двойное остекление с вентилируемой воздушной прослойкой.

Стекла всех теплозащитных экранов обладают спектральной селективностью, и поэтому их эффективность в большой степени зависит от спектрального состава излучения. При длине волны излучения более 5 мкм для защиты может быть использовано обычное оконное стекло толщиной 1 мкм. При длине 2,8...5 мкм требуется бесцветное стекло толщиной 5 мм. При длине волны в диапазоне 0,78...2,8 мкм требуется применять теплозащитное стекло толщиной

Эффективность теплозащиты стекол зависит от температуры источника излучения теплоты. Наибольшую эффективность при температуре до 1100°С имеет органическое стекло толщиной 6...8 мм. Выше этой температуры □ закаленное стекло, окрашенное в массе, со светопропусканием 40%. Если тепловой поток действует на стекло постоянно, то эффективность теплозащиты снижается в среднем на 10 % по сравнению с периодически действующим потоком.

Выбор стекла для смотровых окон постов правления должен производиться с учетом значений интенсивности облучения и температуры источника излучения.

Прозрачные теплоотводящие экраны (водяные и вододисперсные завесы) применяют для экранирования рабочих окон печей и т. п., если через экран необходимо вводить инструмент или заготовки. Водяные завесы рекомендуется применять при интенсивности облучения 0,350... 1,400 кВт/м 2 . Коэффициент эффективности водяных завес в различных участках спектра в значительной степени зависит от толщины слоя и достигает 80 %.

Тонкие водяные пленки (толщиной до 15 мм) хорошо поглощают тепловые лучи с длиной волны более 1,9 мкм, а лучше - с длиной волны более 3,2 мкм. Поэтому они пригодны для экранирования источников с температурой до 800 °С. При толщине слоя воды 15... 20 мм полностью поглощаются тепловые лучи с длиной волны более 1 мкм. При таком слое вода эффективно защищает от теплового

излучения источников с температурой до 1800 °С. Экраны в виде водяной пленки, стекающей по стеклу, более устойчивы сравнению со свободными водяными завесами. Они имеют коэффициент эффективности порядка 90 % и могут применяться при интенсивности облучения до 1,75 кВт/м 2 .

Аквариумные экраны, представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15...20 мм, имеют коэффициент эффективности до 93 % и рекомендуются при интенсивности облучения до 2,0 кВт/мг.

Коэффициент эффективности вододисперсных завес постоянен в диапазоне длин 1... 3 мкм и достигает 0,7. Рекомендуемая область применения завес при интенсивности облучения до 3,5.. .7 кВт/м 2 .

Контрольные вопросы

1. Укажите основные мероприятия по защите от вредного действия теплового излучения.

2. Индивидуальные средства защиты от теплового излучения.

3. По каким признакам классифицируют теплозащитные экраны?

4. Теплозащитные экраны: область применения, преимущества и недостатки.

5. Конструкции непрозрачных теплозащитных экранов.

6. Эффективность теплозащитных экранов. Сформулируйте пути повышения эффективности их защиты.

7. Водяные и вододисперсные завесы: область применения, преимущества и недостатки.

6.ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ

Для снижения и предупреждения травматизма на производстве применяют современные средства обеспечения безопасности (рис16). Несмотря на их непрерывное совершенствование, полностью устранить опасности из производственного процесса и исключить их влияние на работающих не удается, так как нулевой риск возможен лишь в системах, лишенных запасенной энергии, а также химических или биологических активных компонентов.

Средства управления включают в себя все системы, задействованные в управлении рабочими органами машин и оборудования (пускатели, кнопки, рычаги, тормозные системы, рулевое управление и т. д.).

Информативные средства служат для обеспечения операторов всей необходимой для работы информацией. К таким средствам относят соединенные с преобразователями (датчиками) индикаторы, табло, средства сигнализации (звуковой сигнал, стоп-сигнал, указатели поворота и т. п.), зеркала заднего вида, стеклоочистители, омыватели стекол и т. п.


Средства регулирования микроклимата (кондиционеры, отопители, вентиляторы, пылеотделители, аспирационное оборудование и др.) поддерживают требуемые параметры воздушной среды рабочей зоны оператора.

Дополнительные средства используют при техническом обслуживании или ремонте машин и ликвидации отклонений от нормального протекания технологического процесса. К таким средствам относят приспособления для настройки предохранительных муфт, очистки рабочих органов (крючки, чистики), огнетушители, лопаты и т. п.

Ограждения (кожух, капот, решетки, сетки, крышки, перила, барьеры, экраны, жалюзи, козырьки и т. д.) защищают оператора от механических воздействий движущихся и вращающихся частей, высоких или низких температур, повышенных уровней излучений, агрессивного действия химических веществ, биологических вредностей и излишней информации. По способу установки и особенностям эксплуатации ограждения подразделяют на съемные, открываемые и раздвижные; по времени эксплуатации - на постоянные, служащие неотъемлемыми частями машин или оборудования, и временные, устанавливаемые на период выполнения работ небольшой продолжительности на непостоянных рабочих местах.

С помощью блокировок можно предотвратить включение рабочих органов при снятом ограждении, самопроизвольное включение рабочих органов и др. Ограничители энергии служат для предотвращения появления в технических системах излишнего количества энергии, влекущего за собой развитие нестационарных режимов и экстремальных ситуаций. К ограничителям энергии жидкости и газов относят клапаны (предохранительные, взрывные, перепускные), мембраны, шайбы; механической энергии

предохранительные муфты, срезные шпонки, штифты и шпильки, регуляторы частоты вращения, концевые выключатели, ловители; электрической энергии - предохранители, защитно-отключающие устройства, плавкие вставки, заземляющие устройства, устройства защитного зануления и т. п.

Защитные устройства должны удовлетворять следующим требованиям: быть достаточно прочными, простыми в изготовлении и применении; исключать возможность травмирования; надежно фиксироваться в требуемом положении; не мешать при работе, техническом обслуживании или ремонте машин и механизмов.

Конструкция защитного устройства должна быть такой, чтобы при отказе его отдельных элементов действие других не прекращалось раньше завершения действия опасного производственного фактора. Средства защиты не должны снижать производительности труда и качества обработки, ухудшать условия наблюдения при выполнении трудовых операций.

Ограждают все потенциально опасные вращающиеся или движу щиеся части машин, механизмов и оборудования (кроме тех, которые нельзя оградить с учетом их функционального назначения); зоны возможного выброса рабочего материала и инструмента; зоны факторов повышенной опасности (высоких температур, напряжений, излучений).

Защитные ограждения, приспособления и устройства должны исключать:

Возможность соприкосновения работника с движу щимися частями машины;

Выпадение или вылет обрабатываемых деталей (материалов), а также частей рабочих органов при их поломках;

Попадание в работающих частичек обрабатываемого материала;

Возможность травмирования при установке и смене рабочих органов, инструментов.

Внутренние поверхности защитных ограждений и посадочные места для них окрашивают в красный цвет, сигнализирующий об опасности в случае их открывания, а на наружной поверхности наносят предупреждающий знак. Для удержания ограждений при съеме и установке их снабжают рукоятками, скобами и другими устройствами, не допускающими самопроизвольного открывания во время работы. Ограждения должны отвечать эстетическим требованиям, быть компактными, пропорциональными, без выступающих крепежных деталей и острых углов.

Ограждения особо опасных рабочих органов или открывающиеся дверцы, крышки, щитки в этих ограждениях необходимо снабжать электрическими либо механическими блокирующими устройствами, обеспечивающими останов машин или оборудования при съеме или открывании ограждения. Дверцы или съемные крышки должны иметь приспособления, не допускающие их самопроизвольного открывания или смещения во время работы оборудования.

Ограждение ремней должно быть расположено возможно ближе к ним и быть шире их не менее чем на 50 мм.

Оградительные устройства чаще всего изготавливают в виде сплошных жестких щитов и кожухов из листовой стали толщиной не менее 0,8 мм либо листового алюминия толщиной не менее 2 мм, либо из прочной пластмассы толщиной не менее 4 мм. При необходимости осмотра ограждаемых механизмов или деталей оборудования ограждения снабжают смотровыми окнами из безопасного стекла толщиной не менее 4 мм. С этой же целью, а также для снижения массы конструкции ограждения выполняют с отверстиями. Они могут представлять собой решетки или сетки. Решетчатые и сетчатые ограждения необходимо располагать не ближе 50 мм от движущихся частей. Обычно размер ячеек сетки не превышает 10x10 мм.

Блокировки должны отвечать следующим требованиям:

Исключать возможность выполнения операций при незафиксированном рабочем материале или его неправильном положении (установке);

Не допускать самопроизвольных перемещений рабочих устройств, транспортных средств, механизмов подъема, поворота и других подвижных элементов линий, оборудования;

Не допускать выполнения следующего цикла до окончания предыдущего;

Обеспечивать останов линии при снятии или открывании ограждения и входе человека в зону ограждения;

Обеспечивать невозможность пуска линии при снятых или открытых ограждениях, а также при нахождении человека в зоне ограждения;

Исключать возможность одновременного использования дублированных органов или пультов управления;

Обеспечивать останов при выходе исполнительных устройств оборудования за пределы запрограммированного пространства, отказе оборудования или выходе параметров энергоносителей за допустимые пределы.

Ограждения представляют собой физическую преграду между человеком и опасным или вредным производственным фактором. В зависимости от назначения и условий работы ограждения изготавливают из различных материалов. Они могут одновременно выполнять роль паро-, газо- и пылеприемников, исключать воздействие тепловых и электромагнитных излучений на работающих, а в отдельных случаях снижать шум и т. д. Такие ограждения называют комбинированными. Например, ограждение заточного круга кроме защиты человека от отлетающих частиц (в том числе и частей самого круга при его разрушении) выполняет функцию пылеприемника.

Расчет ограждений

Ограждения помимо ограничительных функций должны гаран­тировать безопасность рабочего и обслуживающего персонала в случае отлета из рабочей зоны разрушенных частей инструмента, сорвавшихся заготовок, деталей, элементов крепления.

При расчете сплошных ограждений из металла по действующей ударной нагрузке определяют толщину стенки ограждения.

Для абразивного круга или вращающейся детали в случае их разрыва на две части ударная нагрузка на ограждения, Н,

где m К - масса круга или детали, кг; v вр - окружная скорость вращения, м/с; - радиус центра тяжести половины абразивного круга или детали, м.

Радиус центра тяжести, м,

где R -радиус внешней окружности круга или детали, м;г-радиус центрального отверстия круга или детали, м.

Ударная (центробежная) сила, которой обладает деталь при ос­вобождении зажимного устройства фрезерного станка, а также сила удара разорвавшегося ремня, цепи или части сломанного инструмента, Н,

где m - масса детали или ее части, кг; v - скорость движения детали, части, м/с; r 1 - радиус кривизны траектории отрыва детали, части, м.

Толщину стенки ограждения, изготавливаемого из листовой конструкционной стали, принимают по справочным данным.

Сплошные ограждения, толщина стенок которых подсчитана указанным методом, могут быть заменены отдельными кружками или сеткой после соответствующего перерасчета конструкции ограждения в зависимости от характера нагрузки (растяжение, изгиб, срез).

Похожие публикации