Вычисление медианы набора чисел. Функция медиана в excel для выполнения статистического анализа

В 1906 году великий ученый и известный специалист по евгенике Фрэнсис Гальтон посетил ежегодную выставку достижений животноводства и птицеводства в западной Англии, где совершенно случайно провел интересный эксперимент.

Как отмечает Джеймс Суровецки, автор книги «Мудрость толпы», на ярмарке Гальтона заинтересовало одно соревнование, в рамках которого люди должны были угадать вес забитого быка. Назвавший наиболее близкое к истинному число объявлялся победителем.

Гальтон был известен своим презрением к интеллектуальным способностям обычных людей. Он считал, что только настоящие эксперты смогут сделать точные утверждения о весе быка. А 787 участников соревнования не были экспертами.

Ученый собирался доказать некомпетентность толпы, вычислив среднее число из ответов участников. Каково же было его удивление, когда оказалось, что полученный им результат почти в точности соответствовал настоящему весу быка!

Среднее значение — позднее изобретение

Конечно, точность ответа поразила исследователя. Но еще более примечательным является тот факт, что Гальтон вообще догадался воспользоваться средним значением.

В сегодняшнем мире средние, и так называемые медианные показатели встречаются на каждом шагу: средняя температура в Нью-Йорке в апреле равняется 52 градусам по Фаренгейту; Стивен Карри в среднем зарабатывает 30 очков за игру; медианный семейный доход в США составляет $51 939/год.

Однако же идея о том, что множество различных результатов можно репрезентировать одним числом, довольна нова. До 17-ого века средние числа вообще не использовались.

Каким же образом появилась и развилась концепция средних и медианных значений? И как ей удалось стать главной измерительной методикой в наше время?

Преобладание средних значений над медианными имело далеко идущие последствия для на нашего понимания информации. И нередко оно приводило людей в заблуждение.

Среднее и медианное значения

Представьте, что вы рассказываете историю о четырех людях, ужинавших прошлым вечером с вами в ресторане. Одному из них вы бы дали 20 лет, другому — 30, третьему — 40, а четвертому — 50. Что вы скажете об их возрасте в своей истории?

Скорее всего, вы назовете их средний возраст.

Среднее значение часто используется для передачи информации о чем-либо, а также для описания некоего множества измерений. Технически, среднее значение — это то, что математики называют «средним арифметическим» — сумма всех измерений, разделенная на число измерений.

Хотя слово «среднее» (average) часто используется как синоним слова «медианное» (median), последним чаще обозначается середина чего-либо. Это слово происходит от латинского «medianus», что значит «середина».

Медианное значение в Древней Греции

История медианного значения берет свое начало с учения древнегреческого математика Пифагора. Для Пифагора и его школы медиана имела четкое определение и сильно отличалась от того, как мы понимаем среднее значение сегодня. Оно использовалось только в математике, а не в анализе данных.

В школе пифагорейцев медианное значение было средним числом в трехчленной последовательности чисел, находящемся в «равном» отношении с соседними членами. «Равное» отношение могло означать одинаково расстояние. Например, число 4 в ряду 2,4,6. Однако оно также могло выражать геометрическую прогрессию, например 10 в последовательности 1,10,100.

Статистик Черчилль Эйзенхарт объясняет, что в Древней Греции, медианное значение не использовалось в качестве репрезентирующего или заменяющего какой-либо набор чисел. Оно просто обозначало середину, и часто использовалось в математических доказательствах.

Эйзенхарт посвятил целых десять лет изучению среднего и медианного значений. Изначально он пытался отыскать репрезентирующую функцию медианы в ранних научных построениях. Однако вместо этого он обнаружил, что большинство ранних физиков и астрономов опирались на единичные, умело проведенные измерения, и у них не было методологии, позволявшей выбрать лучший результат среди множества наблюдений.

Современные исследователи основывают свои выводы на сборе больших объемов данных, как, например, биологи, изучающие человеческий геном. Древние ученые же могли провести несколько измерений, но выбирали лишь самое лучшее для построения своих теорий.

Как писал историк астрономии Отто Нойгебауэр, «это согласуется с осознанным стремлением античных людей минимизировать количество эмпирических данных в науке, потому что они не верили в точность непосредственных наблюдений».

Например, греческий математик и астроном Птолемей вычислил угловой диаметр Луны, используя метод наблюдения и теорию движения земли. Его результат был равен 31’20. Сегодня же мы знаем, что диаметр Луны колеблется от 29’20 до 34’6 в зависимости от расстояния от Земли. Птолемей в своих вычислениях использовал мало данных, но у него были все основания полагать, что они были точными.

Эйзенхарт пишет: «Необходимо иметь в виду, что связь между наблюдением и теорией в античности была иной, нежели сегодня. Результаты наблюдений понимались не как факты, под которые должна подстраиваться теория, но как конкретные случаи, которые могут быть полезны лишь в качестве иллюстративных примеров истинности теории»

В конце концов, ученые обратятся к репрезентативным измерениям данных, но изначально ни средние, ни медианные значения не использовались в этой роли. Со времен античности до сегодняшнего дня в качестве такого репрезентативного средства использовался другой математический концепт — полусумма крайних значений.

Полусумма крайних значений

Новые научные средства почти всегда возникают из необходимости решить определенную задачу в какой-либо дисциплине. Необходимость найти лучшее значение среди множества измерений возникло из потребности точно определить географическое положение.

Интеллектуальный гигант 11-ого века Аль-Бируни известен как один из первых людей, использовавших методологию репрезентирующих значений. Аль-Бируни писал, что когда в его распоряжении было множество измерений, и он хотел найти лучшее среди них, он использовал следующее «правило»: нужно отыскать число, соответствующее середине между двумя крайними значениями. При вычислении полусуммы крайних значений не принимаются во внимание все числа между максимальным и минимальным значениями, а находится среднее только для этих двух чисел.

Аль-Бируни применял этот метод в разных областях, в том числе для вычисления долготы города Газни, что находится на территории современного Афганистана, а также в своих исследованиях свойств металлов.

Однако в последние несколько веков полусумма крайних значений используется все реже. На самом деле, в современной науке она и вовсе не актуальна. На место полусуммы пришло медианное значение.

Переход к средним значениям

К началу 19-ого века использование медианного/среднего значения стало распространенным методом нахождения наиболее точно репрезентирующего значения из группы данных. Фридрих фон Гаусс, выдающийся математик своего времени, в 1809-ом году писал: «Считалось, что если некоторое число было определено несколькими прямыми наблюдениями, совершенными в одинаковых условиях, то среднее арифметическое значение является наиболее истинным значением. Если оно и не совсем строгое, то, по крайней мере, оно близко к действительности, и поэтому на него всегда можно положиться».

Почему произошел подобный сдвиг в методологии?

На этот вопрос довольно трудно ответить. В своем исследовании Черчилль Эйзенхарт предполагает, что метод нахождения среднего арифметического мог зародиться в области измерения магнитного отклонения, то есть в отыскании отличия между направлением стрелки компаса, указывающей на север, и реальным севером. Это измерение было крайне важным в эпоху Великих Географических Открытий.

Эйзенхарт выяснил, что до конца 16-ого века большинство измерявших магнетическое отклонение ученых использовали метод ad hoc (от лат. «к этому, для данного случая, для этой цели») при выборе наиболее точного измерения.

Но в 1580-ом году ученый Уильям Боро подошел к проблеме иначе. Он взял восемь различных измерений отклонения и, сравнив их, пришел к выводу, что наиболее точное значение было между 11 ⅓ и 11 ¼ градусами. Вероятно, он вычислил среднее арифметическое, которое находилось в этом диапазоне. Однако сам Боро открыто не называл свой подход новым методом.

До 1635-ого года вообще не было однозначных случаев использования среднего значения в качестве репрезентирующего числа. Однако именно тогда английский астроном Генри Геллибренд взял два различных результата измерения магнетического отклонения. Одно из них было сделано утром (11 градусов), а другое — днем (11 градусов и 32 минуты). Вычисляя наиболее истинное значение, он писал:

«Если мы найдем среднее арифметическое, мы с большой вероятностью можем утверждать, что результат точного измерения должен быть около 11 градусов 16 минут».

Вполне вероятно, что это был первый случай использования среднего значения как наиболее близкого к истинному!

Слово «среднее» (average) применялось в английском языке в начале 16-ого века для обозначения финансовых потерь от ущерба, которое получило судно или перевозимый груз во время плавания. В течение следующих ста лет оно обозначало именно эти потери, которые высчитывались как среднее арифметическое. Например, если корабль во время плавания был поврежден, и команде приходилось выбрасывать за борт некоторые товары, чтобы сохранить вес судна, инвесторы несли финансовые потери, эквивалентные сумме их инвестиции — эти потери вычислялись так же, как среднее арифметическое. Так постепенно значения среднего (average) и среднего арифметического сближались.

Медианное значение

В наши дни среднее значение или среднее арифметическое используются как основной способ для выбора репрезентативного значения множества измерений. Как же это произошло? Почему эта роль не была отведена медианному значению?

Френсис Гальтон был чемпионом медианного значения

Термин «медианное значение» (median) — средний член в ряде чисел, разделяющий этот ряд наполовину — появился примерно в то же время, что и среднее арифметическое. В 1599-ом году математик Эдвард Райт, работавший над проблемой нормального отклонения в компасе, впервые предложил использовать медианное значение.

«…Допустим, множество лучников стреляют в некоторую мишень. Цель впоследствии убирают. Каким образом можно узнать, где была цель? Нужно найти среднее место между всеми стрелами. Аналогично, среди множества результатов наблюдений ближе всего к истине будет то, которое находится посередине».

Медианное значение широко использовалось в девятнадцатом столетии, став обязательной частью любого анализа данных в то время. Им также пользовался и Френсис Гальтон, выдающийся аналитик девятнадцатого века. В истории о взвешивании быка, рассказанной вначале этой статьи, Гальтон изначально использовал медианное значение как представляющее мнение толпы.

Множество аналитиков, включая Гальтона, предпочитали медианное значение, поскольку его легче рассчитать для небольших наборов данных.

Тем не менее, медианное значение никогда не было более популярным, чем среднее. Скорее всего, это произошло из-за особых статистических свойств, присущих среднему значению, а также его отношения к нормальному распределению.

Связь среднего значения и нормального распределения

Когда мы проводим множество измерений, их результаты, как говорят статистики, «нормально распределены». Это значит, что если эти данные нанести на график, то точки на нем будут изображать нечто похожее на колокол. Если их соединить, получится «колоколообразная» кривая. Нормальному распределению соответствуют многие статистические данные, например, рост людей, показатель интеллекта, а также показатель самой высокой годовой температуры.

Когда данные нормально распределены, среднее значение будет очень близким к высшей точке на колоколообразной кривой, и очень большое количество измерений будет близким к среднему значению. Существует даже формула, предсказывающая, как много результатов измерений будут находиться на некотором расстоянии от среднего значения.

Таким образом, вычисление среднего значения дает исследователям много дополнительной информации.

Связь среднего значения со стандартным отклонением дает ему большое преимущество, ведь у медианного значения такой связи нет. Эта связь — важная часть анализа экспериментальных данных и статистической обработки информации. Именно поэтому среднее значение стало ядром статистики и всех наук, полагающихся в своих заключениях на множественные данные.

Преимущество среднего значения также связано с тем, что оно легко вычисляется компьютерами. Хотя медианное значение для небольшой группы данных довольно легко вычислить самостоятельно, все же намного проще написать компьютерную программу, которая находила бы среднее значение. Если вы пользуетесь Microsoft Excel, то наверняка знаете, что медианную функцию не так просто рассчитать, как функцию среднего значения.

В итоге, благодаря большому научному значению и простоте использования среднее значение стало главной репрезентативной величиной. Тем не менее, этот вариант далеко не всегда является самым лучшим.

Преимущества медианного значения

Во многих случаях, когда мы хотим вычислить центральное значение распределения, медианное значение является лучшим показателем. Так происходит потому, что среднее значение во многом определяется крайними результатами измерений.

Многие аналитики считают, что бездумное использование среднего значения отрицательно сказывается на нашем понимании количественной информации. Люди смотрят на среднее значение и думают, что это «норма». Но на самом деле оно может быть определено каким-нибудь одним сильно выдающимся из однородного ряда членом.

Представьте себе аналитика, желающего узнать репрезентативное значение для стоимости пяти домов. Четыре дома стоят $100,000, а пятый — $900,000. Среднее значение, таким образом, будет равняться $200,000, а медианное — $100,000. В этом, как и во многих других случаях, медианное значение дает лучшее понимание того, что можно назвать «стандартом».

Понимая, насколько сильно крайние значения могут сказаться на среднем, для отражения изменений в семейных доходах США используется медианное значение.

Медианные показатель также менее чувствителен к «грязным» данным, с которыми сегодня имеют дело аналитики. Многие статистики и аналитики собирают информацию, опрашивая людей в интернете. Если пользователь случайно добавит в ответ лишний ноль, который превратит 100 в 1000, то эта ошибка намного сильнее скажется на среднем значении, чем на медианном.

Среднее или медианное?

Выбор между медианным и средним значением имеет далеко идущие последствия — от нашего понимания влияния лекарств на здоровье до знаний относительно того, какой семейный бюджет можно назвать стандартным.

Поскольку сбор и анализ данных все больше определяет то, как мы понимаем мир, растет и значение используемых нами величин. В идеальном мире аналитики использовали бы и среднее, и медианное значение для графического выражения данных.

Но мы живем в условиях ограниченного времени и внимания. Из-за этих ограничений часто нам необходимо выбрать лишь что-то одно. И во многих случаях предпочтительней именно медианное значение.

Структурные (позиционные) средние – это средние величины, которые занимают определенное место (позицию) в ранжированном вариационном ряду.

Мода (Mo ) — это значение признака, наиболее часто встречающееся в исследуемой совокупности.

Для дискретных вариационных рядов модой будет значение варианты с наибольшей частотой

Пример . Определить моду по имеющимся данным (табл. 7.5).

Таблица 7.5 – Распределение женской обуви, проданной в обувном магазине N , февраль 2013 г.

По данным табл. 5 видно, что наибольшая частота f max = 28, ей соответствует значение признака x = 37 размер. Следовательно, Mo = 37 размер обуви, т.е. именно этот размер обуви пользовался наибольшим спросом, наиболее часто покупали обувь 37-го размера.

В сначала определяется модальный интервал , т.е. содержащий моду – интервал с наибольшей частотой (в случае интервального распределения с равными интервалами, в случае с неравными интервалами – по наибольшей плотности).

Модой приближенно считается середина модального интервала. Конкретное значение моды для интервального ряда определяется по формуле:

где x Mo – нижняя граница модального интервала;

i Mo – величина модального интервала;

f Mo – частота модального интервала;

f Mo -1 – частота интервала, предшествующего модальному;

f Mo +1 – частота интервала, следующего за модальным.

Пример . Определить моду по имеющимся данным (табл. 7.6).

Таблица 7.6 – Распределение работников по стажу

По данным табл. 6 видно, что наибольшая частота f max = 35, ей соответствует интервал: 6-8 лет (модальный интервал). Определим моду по формуле:

лет.

Следовательно, Mo = 6,8 лет, т.е. большинство работников имеют стаж 6,8 лет.

Название медианы взято из геометрии, где им именуется отрезок, соединяющий одну из вершин треугольника с серединой противоположной стороны и разделяющий, таким образом, сторону треугольника на две равные части.

Медиана () это значение признака, приходящееся на середину ранжированной совокупности. Иначе медиана – это величина, которая делит численность упорядоченного вариационного ряда на две равные части – одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Для ранжированного ряда (т.е.упорядоченного — построенного в порядке возрастания или убывания индивидуальных значений признака) с нечетным числом членов (n= нечет) медианой является варианта, расположенная в центре ряда. Порядковый номер медианы (N Me ) определяется следующим образом:

N Me =(n +1)/ 2.

Пример. В ряду из 51 члена номер медианы (51+1)/2 = 26, т.е. медианой является вариант, стоящий в ряду 26-ым по порядку.

Дляранжированного ряда с четным числом членов (n= чет) – медианой будет средняя арифметическая из двух значений признака, расположенных в середине ряда. Порядковые номера двух центральных вариант определяются следующим образом:

N Me 1 =n/ 2; N Me 2 =(n/ 2)+ 1.

Пример. При n=50; N Me1 = 50/2 = 25; N Me2 = (50/2)+1 = 26, т.е. медианой является средняя из вариант, стоящих в ряду 25-ой и 26-ой по порядку.

В дискретных вариационных рядах медиана находится по накопленной частоте, соответствующей порядковому номеру медианы или впервые его превышающей. Иначе по накопленной частоте равной или впервые превышающей половину суммы всех частот ряда.

Пример . Определить медиану по имеющимся данным (табл. 7.7).

Таблица 7.7 – Распределение женской обуви, проданной в обувном магазине N , февраль 2013 г.

По данным табл. 7 определим порядковый номер медианы: N Me =(67+1)/2=34.

Мода. Медиана. Способы их расчета (стр. 1 из 2)

Накопленная частота, впервые превышающая это значение, S = 41, ей соответствует значение признака x = 37 размер. Следовательно, Me = 37 размер обуви, т.е. половина пар покупается меньше 37-го размера, а другая половина – больше.

В этом примере мода и медиана совпадают, но они могут и не совпадать.

В интервальном вариационном ряду определяются накопленные частоты, по данным о накопленных частотах находят медианный интервал – интервал, в котором накопленная частота составляет половину или впервые превышает половину всей суммы частот. Формула для определения медианы в интервальном ряду распределения имеет следующий вид:

.

где x Me – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f i – сумма частот ряда;

S Me -1 – сумма накопленных частот интервала, предшествующего медианному;

f Me – частота медианного интервала.

Пример . Определить медиану по имеющимся данным (табл. 7.8).

Таблица 7.8 – Распределение работников по стажу

По данным табл. 8 определим порядковый номер медианы: N Me =100 /2=50. Накопленная частота, впервые превышающая это значение, S = 82, ей соответствует интервал 6-8 лет (медианный интервал). В этом примере модальный и медианный интервал совпадают, но они могут и не совпадать. Определим медиану по формуле:

лет

Следовательно, Me = 6,2 года, т.е. половина работников имеют стаж менее 6,2 года, а другая половина – более.

Мода и медиана находят широкое применение в разных областях экономики. Так, исчисление модальной производительности труда, модальной себестоимости и т.д. дает возможность экономисту судить о преобладающем в данный момент их уровне. Эта характеристика должна быть использована для выявления резервов нашей экономики. Мода имеет значение для решения практических задач. Так, при планировании массового выпуска одежды и обуви устанавливается размер продукции, который пользуется наибольшим спросом (модальный размер). Мода может быть использована в качестве приближенной характеристики уровня изучаемого признака вместо средней арифметической, если распределения частот близко к симметричному и имеет одну неплоскую вершину.

Медиану следует применять в качестве средней величины в тех случаях, где нет достаточной уверенности в однородности изучаемой совокупности. На медиану влияют не столько сами значения, сколько число случаев на том или ином уровне. Следует также отметить, что медиана всегда конкретна (при большом числе наблюдений или в случае нечетного числа членов совокупности), т.к. под Ме подразумевается некоторый действительный реальный элемент совокупности, тогда как арифметическая средняя часто принимает такое значение, которое не может принимать ни одна из единиц совокупности.

Главное свойство Ме в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины: . Это свойство Ме может быть использовано, например, при определении места строительства общественных зданий, т.к. Ме определяет точку, дающую наименьшее расстояние, допустим, детских садов от местожительства родителей, жителей населенного пункта от кинотеатра, при проектировке трамвайных, троллейбусных остановок и т.д.

В системе структурных показателей в качестве показателей особенностей формы распределения выступают варианты, занимающие определенное место в ранжированном вариационном ряду (каждое четвертое, пятое, десятое, двадцать пятое и т.д.). Аналогично с нахождением медианы в вариационных рядах можно отыскать значение признака у любой по порядку единицы ранжированного ряда.

Квартили – значения признака, делящие ранжированную совокупность на четыре равные части. Различают квартиль нижний (Q 1 ), средний (Q 2 ) и верхний (Q 3 ). Нижний квартиль отделяет 1/4 часть совокупности с наименьшими значениями признака, верхний — 1/4 часть с наибольшими значениями признака. Это означает, что 25% единиц совокупности будут меньше по величине Q 1 ; 25% единиц будут заключены между Q 1 и Q 2 ; 25% – между Q 2 и Q 3 ; остальные 25% превосходят Q 3 . Средним квартилем (Q 2 ) является медиана.

Для расчета квартилей по интервальному ряду используют формулы:

;

.

где x Q1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25%);

x Q3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75%);

S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;

S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;

f Q1 – частота интервала, содержащего нижний квартиль;

f Q3 – частота интервала, содержащего верхний квартиль.

Децили – это значения вариант, которые делят ранжированный ряд на десять равных частей: 1-ый дециль (d 1 ) делит совокупность в соотношении 1/10 к 9/10, 2-ой дециль (d 2 ) — в соотношении 2/10 к 8/10 и т.д. Вычисляются децили по той же схеме, что и медиана, и квартили:

;

.

Использование в анализе вариационных рядов распределения рассмотренных выше характеристик позволяет глубоко и детально охарактеризовать изучаемую совокупность.

ПОСМОТРЕТЬ ЕЩЕ:

Структурные средние величины

Наряду со степенными средними широкое распространение получили структурные средние.

Структура статистических совокупностей бывает разной. При этом чем симметричнее распределение единиц совокупности, чем качественно однороднее ее состав по изучаемому признаку, тем лучше, надежнее средняя величина признака характеризует изучаемое явление. Но для случаев резкой скошенности (асимметрия) ряда распределения средняя арифметическая уже не так типична. Например, средний размер вклада в сбербанках не представляет особого интереса, так как основная масса вкладов находится ниже этого уровня, а на среднюю оказывают существенное влияние крупные вклады, которых мало и которые не характерны для массы вкладов.

Мода (статистика)

В таких случаях статистика применяет другую систему – систему вспомогательных структурных средних. К их числу относятся мода, медиана, а также квартели, квинтели, децели, перцентели.

Мода (Мо) – наиболее часто встречающаяся величина признака, а в дискретном вариационном ряду – это варианта с наибольшей частотой.

В статистической практике мода используется при изучении доходов населения, покупательского спроса, регистрации цен и при анализе некоторых технико-экономических показателей работы предприятий.

В отдельных случаях именно мода представляет интерес, а не средняя арифметическая. Иногда она применяется вместо арифметической средней, например, для характеристики структуры рядов распределения.

Порядок определения моды зависит от вида ряда распределения. Если варьирующий признак представлен в виде дискретного ряда, то для определения моды не требуется никаких вычислений. В таком ряду модой будет то значение признака, которое обладает наибольшей частотой.

Если значение признака представлены в виде интервального вариационного ряда с равными интервалами, то моду определяют расчетным путем по формуле:

где х Мо – нижняя граница модального интервала,

i Мо – величина модального интервала,

f Мо , f Мо-1 , f Мо+1 – соответственно частоты модального, предмодального (предыдущего) и послемодального (следующего за модальным) интервалов.

Медиана (Ме) – это величина признака, которая находится в середине ранжированного вариационного ряда, где отдельные значения признака (варианты) расположены в порядке их возрастания или убывания (по рангу).

Медиану следует применять в качестве средней величины в тех случаях, где нет достаточной уверенности в однородности изучаемой совокупности. Медиана находит применение в маркетинговой деятельности. Например, размещение элеваторов, заводов первичного виноделия, консервных заводов, сумма расстояний до которых от поставщиков сырья должна быть наименьшей.

Медиана, как и мода, определяется по-разному. Это зависит от строения ряда распределения.
Для определения медианы в дискретных вариационных рядах:

1) находят ее порядковый номер по формуле

N Me =
2) строят ряд накопленных частот

3) находят накопленную частоту, которая равна порядковому номеру медианы или его превышает

4) варианта, соответствующая данной накопленной частоте, является медианой.

Если число членов дискретного ряда нечетное, то медиана находится в середине ряда и делит этот ряд пополам на две равные части по числу членов ряда. Порядковый номер медианы в этом случае вычисляется по формуле:

N Me =(f + 1)2,

где f число членов ряда.

В интервальных рядах сначала определяют медианный интервал. Для этого так же, как и в дискретных рядах, рассчитывают порядковый номер медианы . Накопленной частоте, которая равна номеру медианы или первая его превышает, в интервальном вариационном ряду соответствует медианный интервал. Обозначим эту накопленную частоту S Me . Непосредственно расчет медианы проводят по формуле:

,
где — нижняя граница медианного интервала

— величина медианного интервала

— накопленная частота интервала, предшествующего медианному

— частота медианного интервала

Графическое определение моды и медианы
Моду и медиану в интервальном ряду можно определить графически.

Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 1). Медиана рассчитывается по кумуляте (рис. 2). Для ее определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Показатели вариации в статистике.

В процессе статистического анализа может сложиться ситуация, когда значения средних величин совпадают, а совокупности, на основе которых они рассчитаны, состоят из единиц, значения признака у которых достаточно резко различают между собой. В этом случае рассчитывают показатели вариации.

Каталог: downloads -> Sotrudniki
downloads -> Н. Л. Иванова М. Ф. Луканина
downloads -> Лекция для специалистов доу и родителей «Профилактика агрессивного поведения дошкольников»
downloads -> Психологическая профессиональная адаптация личности
downloads -> Департамент образования и науки кемеровской области кемеровский областной психолого-валеологический центр
downloads -> Федеральная служба РФ по контролю за оборотом наркотиков управление по кемеровской области
Sotrudniki -> Боу чувашской Республики спо «чэтк» Минобразования Чувашии
downloads -> Особенности психолого-педагогического сопровождения развития детей дошкольного возраста
downloads -> Мишина М. М. Развитие мышления в зависимости от включенности в семейно-родовые отношения
Sotrudniki -> Формирование профессионально-значимых качеств у обучающихся с нарушениями интеллекта по профессии

КОНТРОЛЬНАЯ РАБОТА

На тему: "Мода. Медиана. Способы их расчета"

Введение

Средние величины и связанные с ними показатели вариации играют в статистике очень большую роль, что обусловлено предметом ее изучения. Поэтому данная тема является одной из центральных в курсе.

Средняя является очень распространенным обобщающим показателям в статистике. Это объясняется тем, что только с помощью средней можно охарактеризовать совокупность по количественно варьирующему признаку. Средней величиной в статистике называется обобщающая характеристика совокупности однотипных явлений по какому-либо количественно варьирующему признаку. Средняя показывает уровень этого признака, отнесенный к единице совокупности.

Изучая общественные явления и стремясь выявить их характерные, типичные черты в конкретных условиях места и времени, статистики широко используют средние величины. С помощью средних можно сравнивать между собой различные совокупности по варьирующим признакам.

Средние, которые применяются в статистике, относятся к классу степенных средних. Из степенных средних наиболее часто применяется средняя арифметическая, реже – средняя гармоническая; средняя гармоническая применяется только при исчислении средних темпов динамики, а средняя квадратическая – только при исчислении показателей вариации.

Средняя арифметическая есть частное от деления суммы вариант на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности образуется как сумма значений признака у отдельных ее единиц. Средняя арифметическая – наиболее распространенный вид средних, так как она соответствует природе общественных явлений, где объем варьирующих признаков в совокупности чаще всего образуется именно как сумма значений признака у отдельных единиц совокупности.

По своему определяющему свойству средняя гармоническая должна применяться тогда, когда общий объем признака образуется как сумма обратных значений вариант. Ее применяют тогда, когда в зависимости от имеющего материала веса приходиться не умножать, а делить на варианты или, что то же самое, умножать на обратное их значение. Средняя гармоническая в этих случаях – это величина обратная средней арифметической из обратных значений признака.

К средней гармонической следует прибегать в тех случаях, когда в качестве весов применяются не единицы совокупности – носители признака, а произведения этих единиц на значение признака.

1. Определение моды и медианы в статистике

Средние арифметическая и гармоническая являются обобщающими характеристиками совокупности по тому или иному варьирующему признаку. Вспомогательными описательными характеристиками распределения варьирующего признака являются мода и медиана.

Модой в статистике называется величина признака (варианта), которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Медианной в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам, по обе стороны от нее (вверх и вниз) находится одинаковое количество единиц совокупности.

Мода и медиана в отличии от степенных средних являются конкретными характеристиками, их значение имеет какая-либо конкретная варианта в вариационном ряду.

Мода применяется в тех случаях, когда нужно охарактеризовать наиболее часто встречающуюся величину признака.

5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

Если надо, например, узнать наиболее распространенный размер заработной платы на предприятии, цену на рынке, по которой было продано наибольшее количество товаров, размер ботинок, пользующийся наибольшим спросом у потребителей, и т.д., в этих случаях прибегают к моде.

Медиана интересна тем, что показывает количественную границу значение варьирующего признака, которую достигла половина членов совокупности. Пусть средняя заработная плата работников банка составила 650000 руб. в месяц. Эта характеристика может быть дополнена, если мы скажем, что половина работников получила заработную плату 700000 руб. и выше, т.е. приведем медиану. Мода и медиана являются типичными характеристиками в тех случаях, когда взяты совокупности однородные и большой численности.

Нахождение моды и медианы в дискретном вариационном ряду

Найти моду и медиану в вариационном ряду, где значения признака заданы определенными числами, не представляет большой трудности. Рассмотрим таблицу 1. с распределение семей по числу детей.

Таблица 1. Распределение семей по числу детей

Очевидно, в этом примере модой будет семья, имеющая двоих детей, так как этому значению варианты соответствует наибольшее число семей. Могут быть распределения, где все варианты встречаются одинаково часто, в этом случае моды нет или, иначе, можно сказать, что все варианты одинаково модальны. В других случаях не одна, а две варианты могут быть наибольшей частоты. Тогда будет две моды, распределение будет бимодальным. Бимодальные распределения могут указывать на качественную неоднородность совокупности по исследуемому признаку.

Чтобы найти медиану в дискретном вариационном ряд, нужно сумму частот разделить пополам и к полученному результату добавить ½. Так, в распределении 185 семьи по числу детей медианой будет: 185/2 + ½ = 93, т.е. 93-я варианта, которая делит упорядоченный ряд пополам. Каково же значение 93-ей варианты? Для того чтобы это выяснить, нужно накапливать частоты, начиная, от наименьшей варианты. Сумма частот 1-й и 2-й вариант равна 40. Ясно, что здесь 93 варианты нет. Если прибавить к 40 частоту 3-й варианты, то получим сумму, равную 40 + 75 = 115. Следовательно, 93-я варианта соответствует третьему значению варьирующего признака, и медианой будет семья, имеющая двоих детей.

Мода и медиана в данном примере совпали. Если бы у нас была четная сумма частот (например, 184), то, применяя указанную выше формулу, получим номер медианной варианты, 184/2 + ½ =92,5. Поскольку варианты с дробным номером не существует, полученный результат указывает, что медиана находится посередине между 92 и 93 вариантами.

3. Расчет моды и медианы в интервальном вариационном ряду

Описательный характер моды и медианы связан с тем, что в них не погашаются индивидуальные отклонения. Они всегда соответствуют определенной варианте. Поэтому мода и медиана не требуют для своего нахождения расчетов, если известны все значения признака. Однако в интервальном вариационном ряду для нахождения приближенного значения моды и медианы в пределах определенного интервала прибегают к расчетам.

Для расчета определенного значения модальной величины признака, заключенного в интервале, применяют формулу:

М о = Х Мо + i Мо *(f Мо – f Мо-1)/((f Мо – f Мо-1) + (f Мо – f Мо+1)),

Где Х Мо – минимальная граница модального интервала;

i Мо – величина модального интервала;

f Мо – частота модального интервала;

f Мо-1 – частота интервала, предшествующего модальному;

f Мо+1 – частота интервала, следующего за модальным.

Покажем расчет моды на примере, приведенном в таблице 2.

Таблица 2. Распределение рабочих предприятия по выполнению норм выработки

Чтобы найти моду, первоначально определим модальный интервал данного ряда. Из примера видно, что наибольшая частота соответствует интервалу, где варианта лежит в пределах от 100 до 105. Это и есть модальный интервал. Величина модального интервала равна 5.

Подставляя числовые значения из таблицы 2. в указанную выше формулу, получим:

М о = 100 + 5 * (104 -12)/((104 – 12) + (104 – 98)) = 108,8

Смысл этой формулы заключается в следующем: величину той части модального интервала, которую нужно добавить к его минимальной границе, определяют в зависимости от величины частот предшествующего и последующего интервалов. В данном случае к 100 прибавляем 8,8, т.е. больше половины интервала, потому что частота предшествующего интервала меньше частоты последующего интервала.

Исчислим теперь медиану. Для нахождения медианы в интервальном вариационном ряду определяем сначала интервал, в котором она находится (медианный интервал). Таким интервалом будет такой, комулятивная частота которого равна или превышает половину суммы частот. Комулятивные частоты образуются путем постепенного суммирования частот, начиная от интервала с наименьшим значением признака. Половина суммы частот у нас равна 250 (500:2). Следовательно, согласно таблицы 3. медианным интервалом будет интервал со значением заработной платы от 350000 руб. до 400000 руб.

Таблица 3. Расчет медианы в интервальном вариационном ряду

До этого интервала сумма накопленных частот составила 160. Следовательно, чтобы получить значение медианы, необходимо прибавить еще 90 единиц (250 – 160).

При определении значения медианы предполагают, что значение единиц в границах интервала распределяется равномерно. Следовательно, если 115 единиц, находящихся в этом интервале, распределяются равномерно в интервале, равном 50, то 90 единицам будет соответствовать следующая его величина:

Мода в статистике

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него.

В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:

  • Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
    Например , средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
  • Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
    Например , медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
  • Мода — число, наиболее часто встречающееся в данном множестве чисел.

    Например , модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

Для характеристики рядов распределения (структуры вариационных рядов), наряду со средней, используются т. н. структурные средние : мода и медиана . Мода и медиана наиболее часто используются в экономической практике.

Мода - варианта, которая наиболее часто встречается в ряду распределения (в данной совокупности).

В дискретных вариационных рядах мода определяется по наибольшей частоте. Предположим товар А реализуют в городе 9 фирм по следующим ценам в рублях:

44; 43; 44; 45; 43; 46; 42; 46;43. Так как чаще всего встречается цена 43 рубля, то она и будет модальной.

При характеристике социальных групп населения по уровню дохода следует использовать модальное значение, нежели среднее. Средняя будет занижать одни показатели и завышать другие - тем самым осредняя (уравнивания) доходы всех слоев населения.

В интервальных вариационных рядах моду определяют приближенно по формуле:

    ХМ0 - нижняя граница модального интервала;

    h Mo - величина (шаг, ширина) модального интервала;

    f 1 - локальная частота интервала, предшествующего модальному;

    f 2 - локальная частота модального интервала;

    f 3 - локальная частота интервала, следующего за модальным.

Распределение населения по уровню среднедушевого месячного дохода

Интервал 1000-3000 в данном распределении будет модальным, т.к. он имеет наибольшую частоту (f=35,5). Тогда по вышеуказанной формуле мода будет равна:

На графике (гистограмме распределения) моду определяют следующим образом: по оси ординат откладывают локальные частоты, а по оси абсцисс -интервалы либо центры интервалов. Выбирают самый высокий столбик, которому соответствует величина признака с наибольшей частотой в ряду распределения.

Мода применяется для решения некоторых практических задач. Так, например, при изучении товарооборота рынка берется модальная цена, для изучения спроса на обувь, одежду используют модальные размеры обуви и одежды.

Медиана - это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значений изучаемого признака). Медиану иногда называют серединной вариантой , т.к. она делит совокупность на две равные части таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда присвоить порядковые номера, то порядковый номер медианы будет определяться по формуле (n+1):2 для рядов, где n - нечетное . Если же ряд с четным числом единиц, томедианой будет являться среднее значение между двумя соседними вариантами, определенными по формуле: n:2, (n+1):2, (n:2)+1.

В дискретных вариационных рядах с нечетным числом единиц совокупности - это конкретное численное значение в середине ряда.

Нахождение медианы в интервальных вариационных рядах требует предварительного определения интервала, в котором находится медиана, т.е. медианного интервала – этот интервал характеризуется тем, что его кумулятивная (накопленная) частота равна полусумме или превышает полусумму всех частот ряда.

    X Me -нижняя граница медианного интервала

    h Me -величина медианного интервала;

    S Me-1 -сумма накопленных частот интервала, предшествующего медианному интервалу;

    f Me -локальная частота медианного интервала.

По данным таблицы определим медианное значение среднедушевого дохода. Для этого необходимо определить какой интервал будет медианным. Используем формулу номера медианной единицы ряда, т.е. середины:

Дробное значение N (всегда при четном числе членов) равное 50,5% говорит о том, что середина ряда находится между 50% и 51%, т.е. в третьем интервале. Иными словами: медианным считается интервал, на который впервые приходится более половины суммы накопленных частот. Отсюда медиана:

Для того, чтобы определить графически интервал, в котором находится медиана, по оси ординат откладывают накопленные частоты, а по оси абсцисс - центры интервалов. Из точки на оси ординат, которой соответствует 50.5% суммы накопленных частот, проводят линию параллельно оси абсцисс до пересечения с кумулятой. Из точки пересечения опускают перпендикуляр на ось абсцисс.

Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. Если M 0

Из соотношения этих показателей следует сделать вывод о правосторонней асимметрии распределения населения по уровню среднедушевого денежного дохода:

Квартиль –это четвертая часть совокупности, определяется как и медиана, только сумму частот необходимо разделить на 4, а при определении квартильного интервала, кумулятивная частота должна быть больше или равна четверти суммы частот совокупности.

Дециль – делит совокупность на десять равных частей. Определяется аналогично как и квартиль, только сумму частот необходимо разделить на 10.

Медиана - это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части - со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы Вы можете

В ранжированных рядах несгруппированные данные для нахождения медианы сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm - нижняя граница медианного интервала;
im - медианный интервал;
Sme- сумма наблюдений, которая была накоплена до начала медианного интервала;
fme - число наблюдений в медианном интервале.

Свойства медианы

  1. Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.
  2. Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.
  3. Медиана обладает свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Определение моды в статистике

Мода - значение признака , имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле :

где ХМо - нижняя граница модального интервала;
imo - модальный интервал;
fм0, fм0-1, fм0+1 — частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения , медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

В силу того, что исследователь не располагает данными об объеме продаж в каждом обменном пункте, расчет средней арифметической с целью определения средней цены за доллар нецелесообразен.

Медиана ряда чисел

Однако можно определить то значение признака, которое носит название медиана (Ме). Медиана

в нашем примере

Номер медианы: №Ме = ;

Мода

Таблица 3.6.

f — сумма частот ряда;

S накопительные частоты

12_

_

S — накопленные частоты.

На рис. 3.2. Изображена гистограмма ряда распределения банков по размеру прибыли (по данным табл. 3.6.).

х — размер прибыли, млн. руб.,

f — число банков.

"МЕДИАНА УПОРЯДОЧЕННОГО РЯДА"

Текстовая HTML-версия публикации


Конспект урока алгебры в 7 классе

Тема урока: «МЕДИАНА УПОРЯДОЧЕННОГО РЯДА».

учитель Озёрной школы филиал МКОУ Бурковская СОШ Ерёменко Татьяна Алексеевна
Цели:
понятие медианы как статистической характеристики упорядоченного ряда; формировать умение находить медиану для упорядоченных рядов с четным и нечетным числом членов; формировать умение интерпретировать значения медианы в зависимости от практической ситуации, закрепление понятия среднего арифметического набора чисел. Развивать навыки самостоятельной работы. Формировать интерес к математике.
Ход урока

Устная работа.
Даны ряды: 1) 4; 1; 8; 5; 1; 2) ; 9; 3; 0,5; ; 3) 6; 0,2; ; 4; 6; 7,3; 6. Найдите: а) наибольшее и наименьшее значения каждого ряда; б) размах каждого ряда; в) моду каждого ряда.
II. Объяснение нового материала.
Работа по учебнику. 1. Рассматрим задачу с п. 10 учебника. Что означает упорядоченный ряд? Подчеркну, что перед нахождением медианы нужно всегда упорядочить ряд данных. 2.На доске знакомимся с правилами нахождения медианы для рядов с четным и нечетным числом членов:
Медианой

упорядоченного

ряда
чисел
с

нечетным

числом

членов

называется число, записанное посередине, а
медианой

упорядоченного ряда
чисел
с четным числом членов
называется среднее арифметическое двух чисел, записанных посредине.
Медианой

произвольного

ряда
называется медиана 1 3 1 7 5 4 соответствующего упорядоченного ряда.
Отмечу, что показатели- среднее арифметическое, мода и медиана по

разному

характеризуют

данные,

полученные

результате

наблюдений.

III. Формирование умений и навыков.
1-я группа. Упражнения на применение формул нахождения медианы упорядоченного и неупорядоченного ряда. 1.
№ 186.
Решение: а) Число членов ряда п = 9; медиана Ме = 41; б) п = 7, ряд упорядочен, Ме = 207; в) п = 6, ряд упорядочен, Ме = = 21; г) п = 8, ряд упорядочен, Ме = = 2,9. Ответ: а) 41; б) 207; в) 21; г) 2,9. Учащиеся комментируют способ нахождения медианы. 2. Найдите среднее арифметическое и медиану ряда чисел: а) 27, 29, 23, 31, 21, 34; в) ; 1. б) 56, 58, 64, 66, 62, 74. Решение: Для нахождения медианы необходимо каждый ряд упорядочить: а) 21, 23, 27, 29, 31, 34. п = 6; X = = 27,5; Ме = = 28; 20 22 2 + 2, 6 3, 2 2 + 1125 ; ; ; 3636 21 23 27 29 31 34 165 66 +++++ = 27 29 2 + б) 56, 58, 62, 64, 66, 74.

Как найти медиану в статистике

п = 6; X = 63,3; Ме = = 63; в) ; 1. п = 5; X = : 5 = 3: 5 = 0,6; Ме = . 3.
№ 188
(устно). Ответ: да; б) нет; в) нет; г) да. 4. Зная, что в упорядоченном ряду содержится т чисел, где т – нечетное число, укажите номер члена, являющегося медианой, если т равно: а) 5; б) 17; в) 47; г) 201. Ответ: а) 3; б) 9; в) 24; г) 101. 2-я группа. Практические задачи на нахождение медианы соответствующего ряда и интерпретацию полученного результата. 1.
№ 189.
Решение: Число членов ряда п = 12. Для нахождения медианы ряд нужно упорядочить: 136, 149, 156, 158, 168, 174, 178, 179, 185, 185, 185, 194. Медиана ряда Ме = = 176. Выработка за месяц была больше медианы у следующих членов артели: 56 58 62 64 66 74 380 66 +++++ =≈ 62 64 2 + 1125 ; ; ; 3636 1125 12456 18 1:5:5 6336 6 6 ++++ ⎛⎞ ++++ = = ⎜⎟ ⎝⎠ 2 3 67 174 178 22 xx + + = 1) Квитко; 4) Бобков; 2) Баранов; 5) Рылов; 3) Антонов; 6) Астафьев. Ответ: 176. 2.
№ 192.
Решение: Упорядочим ряд данных: 30, 31, 32, 32, 32, 32, 32, 32, 33, 35, 35, 36, 36, 36, 38, 38, 38, 40, 40, 42; число членов ряда п = 20. Размах A = x max – x min = 42 – 30 = 12. Мода Мо = 32 (это значение встречается 6 раз – чаще других). Медиана Ме = = 35. В данном случае размах показывает наибольший разброс времени на обработку детали; мода показывает наиболее типическое значение времени обработки; медиана – время обработки, которое не превысили половина токарей. Ответ: 12; 32; 35.
IV. Итог урока.
– Что называется медианой ряда чисел? – Может ли медиана ряда чисел не совпадать ни с одним из чисел ряда? – Какое число является медианой упорядоченного ряда, содержащего 2п чисел? 2п – 1 чисел? – Как найти медиану неупорядоченного ряда?
Домашнее задание:
№ 187, № 190, № 191, № 254. 10 11 35 35 22 xx + + =

В раздел основное общее образование

Мода и медиана

К средним величинам относят также моду и медиану.

Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней (арифметической, гармонической и др.) невозможен или нецелесообразен.

Например, выборочное обследование в г. Омске 12 коммерческих пунктов обмена валюты позволило зафиксировать различные цены за доллар при его продаже (данные на 10 октября 1995г. при биржевом курсе доллара -4493руб).

В силу того, что исследователь не располагает данными об объеме продаж в каждом обменном пункте, расчет средней арифметической с целью определения средней цены за доллар нецелесообразен. Однако можно определить то значение признака, которое носит название медиана (Ме). Медиана лежит в середине ранжированного ряда и делит его пополам.

Расчет медианы по несгруппированным данным производится следующим образом:

а) расположим индивидуальные значения признака в возрастающем порядке:

4500 4500 4535 4540 4550 4560 4560 4560 4560 4570 4570 4570

б) определим порядковый номер медианы по формуле:

в нашем примере это означает, что медиана в данном случае расположена между шестым и седьмым значениями признака в ранжированном ряду, так как ряд имеет четное число индивидуальных значений. Таким образом, Ме равна средней арифметической из соседних значений: 4550, 4560.

в) рассмотрим порядок вычисления медианы в случае нечетного числа индивидуальных значений.

Допустим, мы наблюдаем не 12, а 11 пунктов обмена валюты, тогда ранжированный ряд будет выглядеть следующим образом (отбрасываем 12-й пункт):

4500 4500 4535 4540 4550 4560 4560 4560 4560 4570 4570

Номер медианы: №Ме = ;

на шестом месте стоит = 4560, который и является медианой: Ме=4560. По обе стороны от нее находится одинаковое число пунктов.

Мода — это наиболее часто встречающееся значение признака у единиц данной совокупности. Она соответствует определенному значению признака.

В нашем случае модальной ценой за доллар можно назвать 4560 руб.: это значение повторяется 4 раза, чаще, чем все другие.

На практике моду и медиану находят, как правило, по сгруппированным данным. В результате группировки был получен ряд распределения банков по величине полученной прибыли за год (табл. 3.6.).

Таблица 3.6.

Группировка банков по величине полученной прибыли за год

Для определения медианы надо подсчитать сумму накопительных частот. Наращивание итого продолжается до получения накопительной суммы частот, превышающей половину суммы частот. В нашем примере сумма накопленных частот (12), превышающая половину всех значений (20:2). Этому значению соответствует медианный интервал, который содержит медиану (5,5 — 6,4). Определим ее значение по формуле:

где начальное значение интервала, содержащего медиану;

— величина медианного интервала;

f — сумма частот ряда;

— сумма накопительных частот, предшествующих медианному интервалу;

— частота медианного интервала.

Таким образом, 50% банков имеют прибыль 6,1 млн. руб., а 50% банков — более 6,1 млн. руб.

Наибольшая частота соответствует также интервалу 5,5 — 6,4, т.е. мода должна находиться в этом интервале. Ее величину определим по формуле:

где — начальное значение интервала, содержащего моду;

— величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным.

Приведенная формула моды может быть использована в вариационных рядах с равными интервалами.

Таким образом, в данной совокупности наиболее часто встречается размер прибыли 6,10 млн. руб.

Медиану и моду можно определить графически. Медиана определяется по кумуляте (рис. 3.1.). Для ее построения надо рассчитать накопительные частоты и частости. Накопительные частоты показывают, сколько единиц совокупности имеют значения признака не больше, чем рассматриваемое значение, и определяется последовательным суммированием частот интервалов. При построении кумулятыы интервального ряда распределения нижней границе первого интервала соответствует частота, равная нулю, а верхней границе — вся частота данного интервала. Верхней границе второго интервала соответствует накопительная частота, равная сумме частот первых двух интервалов, и т.д.

Построим кумулятивную кривую по данным табл. 6 о распределении банков по размеру прибыли.

S накопительные частоты

12_

_

3,7-4,6 4,6-5,5 5,5-6,4 6,4-7,3 7,3-8,2 Х прибыль

Рис. 3.1. Кумулята ряда распределения банков по размеру прибыли:

х — размер прибыли, млн. руб.,

S — накопленные частоты.

Для определения медианы высоту наибольшей ординаты, которая соответствует общей численности совокупности, делят пополам. Через полученную точку проводят прямую, параллельную оси абсцисс, до пересечения ее с кумулятой. Абсцисса точки пересечения является медианой.

Мода определяется по гистограмме распределения. Гистограмма строится так:

на оси абсцисс откладываются равные отрезки, которые в принятом масштабе соответствуют величине интервалов вариационного ряда. На отрезках строятся прямоугольники, площади которых пропорциональны частотам (или частостям) интервала.

Медиана в статистике

3.2. Изображена гистограмма ряда распределения банков по размеру прибыли (по данным табл. 3.6.).

3,7-4,6 4,6-5,5 5,5-6,4 6,4-7,3 7,3-8,2 Х

Рис. 3.2. Распределение коммерческих банков по размеру прибыли:

х — размер прибыли, млн. руб.,

f — число банков.

Для определения моды правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника, а левую вершину модального прямоугольника — с левым верхним углом последующего прямоугольника. Абсцисса точки пересечения этих прямых и будет модой распределения.

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности.

Задача №1. Расчёт средней арифметической, модального и медианного значения

Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

  • Среднее значение
  • Медиана
  • Мода

Медиана (статистика)

Медиана (статистика) , в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5.

5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:

  • Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
    Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
  • Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
    Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
  • Мода — число, наиболее часто встречающееся в данном множестве чисел.
    Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

Урок алгебры в 7 классе.

Тема «Медиана как статистическая характеристика».

Учитель Егорова Н.И.

Цель урока: сформировать у учащихся представление о медиане набора чисел и умение вычислять ее для несложных числовых наборов, закрепление понятия среднего арифметического набора чисел.

Тип урока: объяснение нового материала.

Ход урока

1. Организационный момент.

Сообщить тему урока и сформулировать его цели.

2. Актуализация прежних знаний.

Вопросы учащимся:

Что называется средним арифметическим набора чисел?

Где располагается среднее арифметическое внутри набора чисел?

Что характеризует среднее арифметическое набора чисел?

Где часто применяется среднее арифметическое набора чисел?

Устные задачи:

Найти среднее арифметическое набора чисел:

Проверка домашнего задания.

Учебник: №169, №172.

3. Изучение нового материала.

На предыдущем уроке мы познакомились с такой статистической характеристикой как среднее арифметическое набора чисел. Сегодня мы посвятим урок еще одной статистической характеристике – медиане.

Не только среднее арифметическое показывает, где на числовой прямой располагаются числа какого-либо набора и где их центр. Другим показателем является медиана.

Медианой набора чисел называется такое число, которое разделяет набор на две равные по численности части. Вместо “медиана” можно было бы сказать “середина”.

Сначала на примерах разберем, как найти медиану, а затем дадим строгое определение.

Рассмотрим следующий устный пример с применением проектора

В конце учебного года 11 учеников 7-го класса сдали норматив по бегу на 100 метров. Были зафиксированы следующие результаты:

После того как ребята пробежали дистанцию, к преподавателю подошел Петя и спросил, какой у него результат.

“Самый средний результат: 16,9 секунды”, – ответил учитель

“Почему?” – удивился Петя. – Ведь среднее арифметическое всех результатов – примерно 18,3 секунды, а я пробежал на секунду с лишним лучше. И вообще, результат Кати (18,4) гораздо ближе к среднему, чем мой”.

“Твой результат средний, так как пять человек пробежали лучше, чем ты, и пять – хуже. То есть ты как раз посередине”, – сказал учитель.

Записать алгоритм нахождения медианы набора чисел:

Упорядочить числовой набор (составить ранжированный ряд).

Одновременно зачеркиваем “самое большое” и “самое маленькое” числа данного набора чисел до тех пор, пока не останется одно число или два числа.

Если осталось одно число, то оно и есть медиана.

Если осталось два числа, то медианой будет среднее арифметическое двух оставшихся чисел.

Предложить учащимся самостоятельно сформулировать определение медианы набора чисел, затем прочитать в учебнике определение медианы (стр. 40), далее решить № 186(а,б), № 187(а) учебника (стр.41).

Замечание:

Обратить внимание учащихся на важное обстоятельство: медиана практически не чувствительна к значительным отклонениям отдельных крайних значений наборов чисел. В статистике это свойство называется устойчивостью. Устойчивость статистического показателя – очень важное свойство, оно страхует нас от случайных ошибок и отдельных недостоверных данных.

4. Закрепление изученного материала.

Решение задач.

Обозначим х-среднее арифметическое, Ме-медиана.

Набор чисел: 1,3,5,7,9.

х=(1+3+5+7+9):5=25:5=5,

Набор чисел: 1,3,5,7,14.

х=(1+3+5+7+14):5=30:5=6.

а) Набор чисел: 3,4,11,17,21

б) Набор чисел: 17,18,19,25,28

в) Набор чисел:25, 25, 27, 28, 29, 40, 50

Вывод: медиана набора чисел, состоящего из нечетного числа членов равна числу, стоящему посередине.

а) Набор чисел:2, 4, 8, 9.

Ме = (4+8):2=12:2=6

б) Набор чисел:1,3,5,7,8,9.

Ме = (5+7):2=12:2=6

Медиана набора чисел, содержащего четное число членов равна полусумме двух чисел, стоящих посередине.

Ученик получил в течении четверти следующие оценки по алгебре:

5, 4, 2, 5, 5, 4, 4, 5, 5, 5.

Найдите средний балл и медиану этого набора.

Найдем средний балл, то есть среднее арифметическое:

х= (5+4+2+5+5+4+4+5+5+5): 10=44:10 = 4,4

Найдем медиану этого набора чисел:

Упорядочим набор чисел: 2,4,4,4,5,5,5,5,5,5

Всего 10 чисел, чтобы найти медиану надо взять два средних числа и найти их полусумму.

Ме = (5+5):2 = 5

Вопрос к учащимся: Если бы вы были учителем, какую бы вы поставили оценку за четверть этому ученику? Ответ обоснуйте.

Президент компании получает зарплату 300000 руб. три его заместителя получают по 150000 руб., сорок служащих – по 50000 руб. и зарплата уборщицы составляет 10000 руб. Найдите среднее арифметическое и медиану зарплат в компании. Какую из этих характеристик выгоднее использовать президенту в рекламных целях?

х = (300000+3·150000+40·50000+10000):(1+3+40+1) = 2760000:45=61333,33 (руб.)

№ 6. Устно.

А) Сколько чисел в наборе, если его медианой служит ее девятый член?

Б) Сколько чисел в наборе, если его медианой служит среднее арифметическое 7-го и 8-го членов?

В) В наборе из семи чисел наибольшее число увеличили на 14. Изменится ли при этом и как среднее арифметическое и медиана?

Г) Каждое из чисел набора увеличили на 3. Что произойдет со средним арифметическим и медианой?

Конфеты в магазине продают на вес. Чтобы узнать, сколько конфет содержится в одном килограмме, Маша решила найти вес одной конфеты. Она взвесила несколько конфет и получила следующие результаты:

12, 13, 14, 12, 15, 16, 14, 13, 11.

Для оценки веса одной конфеты пригодны обе характеристики, т.к. они не сильно отличаются друг от друга.

Итак, для характеристики статистической информации используют среднее арифметическое и медиану. Во многих случаях какая-то из характеристик может не иметь никакого содержательного смысла (например, имея сведения о времени дорожно-транспортных происшествий, вряд ли имеет смысл говорить о среднем арифметическом этих данных).

Домашнее задание:пункт 10, № 186(в,г), № 190.

5. Итоги урока. Рефлексия.

  1. «Статистические исследования: сбор и группировка статистических данных»

    Урок

    темы , предлагаемые для седьмого класса . ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ. § 1. Статистические характеристики . П 1. Среднее арифметическое, размах и мода 1ч. П 2. Медиана как статистическая характеристика

  2. Рабочая программа учебного курса «алгебра» в 7 классе (базовый уровень) пояснительная записка

    Рабочая программа

    … п.10 Медиана как статистическая характеристика 23 п.9 Среднее арифметическое, размах и мода 24 Контрольная работа № 2 по теме

  3. Рабочая программа. Математика. 5 класс с. Канаши. 2011г

    Рабочая программа

    … уравнений. Среднее арифметическое, размах и мода. Медиана как статистическая характеристика . Цель – систематизировать и обобщить сведения о … и навыков, полученных на уроках по данным темам (курс алгебры 10 класса ). 11 класс (4 часа в неделю …

  4. Приказ №51 от «30» август 2012 г. Рабочая программа по алгебре 7 класс

    Рабочая программа

    … учебным материалом Медиана как статистическая характеристика Знать определение среднего арифметического, размаха, моды и медианы как статистической характеристики Фронтальная и индивидуальная …

  5. Рабочая программа по математике 7 класс ii ступень базовый уровень (1)

    Рабочая программа

    Как найти медиану ряда

    же, как в 6 классе . Изучение темы завершается ознакомлением учащихся с про­стейшими статистическими характеристиками : средним … М. : Издательский дом «Генжер», 2009. 3. Жохов, В. И. Уроки алгебры в 7 классе : кн. для учителя / В. И. Жохов …

Другие похожие документы..

Похожие публикации