Какие углеводы называют моно. Гликозидных


Государственное бюджетное образовательное учреждение

высшего профессионального образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИКО-СТОМАТОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

имени А.М. ЕВДОКИМОВА

КАФЕДРА ОБЩЕЙ И БИООРГАНИЧЕСКОЙ ХИМИИ

УГЛЕВОДЫ
ОЛИГО - , ПОЛИСАХАРИДЫ

лекция № 24

Олигосахариды.

Олигосахариды составляют промежуточную группу между моно- и полисахаридами. Как правило, к ним относят углеводы, содержащие в своей молекуле от двух до десяти остатков моносахаридов.

Простейшими олигосахаридами являются дисахариды. По своим физико-химическим свойствам они во многом сходны с моносахари-дами: обладают способностью кристаллизоваться, растворимы в воде и обладают сладким вкусом. Отличие заключается в способности дисахаридов к кислотному гидролизу.

Образование дисахаридов происходит путем димеризации моносахаридов с обязательным участием хотя бы одной гликозидной OH-группы. Существует два типа связывания моносахаридных остатков: «голова к хвосту» и «голова к голове». Под термином «голова» подразумевают гликозидную OH-группу, под термином «хвост»  любую другую гидроксильную группу. В первом случае образуются дисахариды, называемые восстанавливающими , во втором  невосстанавливающими .

Схему протекания димеризации по принципу «голова к хвосту» можно представить следующим образом:

Образующуюся связь называют гликозидной и обозначают
- (или -) (1 4), где цифры показывают положения гидроксилов, образующих связь, а - (или -)  конфигурацию этой связи.

Принцип «голова к голове» реализуется так:

Восстанавливающие дисахариды.

Среди восстанавливающих дисахаридов широко распространены мальтоза , лактоза , и целлобиоза . Эти дисахариды изомерны друг к другу и отвечают общей формуле C 12 H 22 O 11 .

Мальтоза (солодовый сахар ) состоит из двух остатков D-глюкопи-ранозы, связанных (1 4)-гликозидной связью:

Аномерный атом углерода, участвующий в образовании глико-зидной связи, имеет α-конфигурацию. Второй аномерный атом может иметь как α- (α-мальтоза), так и -конфигурацию (-мальтоза). Преоб-ладающей является -форма.

Первая молекула глюкозы, поставляющая для образования связи гликозидную OH-группу, рассматривается как заместитель в 4-м по-ложении второго моносахарида. В этой связи в названии дисахарида она приобретает суффикс -озил, в названии же второй молекулы сохраняется суффикс -оза. В названии дисахарида обязательно указывается конфигурация обоих аномерных атомов. Таким образом, полное номенклатурное название α-мальтозы: α-D-глюкопиранозил-
(1 4)-α-D-глюкопираноза.

Мальтоза  промежуточный продукт расщепления крахмала и гликогена в желудочно-кишечном тракте. В свободном виде в пищевых продуктах она встречается в меде , солоде, пиве, патоке и проросшем зерне. Получают мальтозу гидролизом крахмала.

Лактоза состоит из остатка -D-галактопиранозы (невосстанавли-вающее звено), связанного -(1 4)-гликозидной связью с остатком
D-глюкозы:

Аномерный атом глюкозного фрагмента может иметь как α- (α-лактоза), так и -конфигурацию (-лактоза). Полное название лактозы: -D-галактопиранозил-(1 4)-α-(или )-D-глюкопираноза.

В природе лактоза содержится только в молоке. Она плохо растворима в холодной воде и в желудочно-кишечном тракте расщепляется до глюкозы и галактозы под действием фермента лактазы . Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. В кисло-молочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Целлобиоза образована двумя D-глюкопиранозными остатками, но в отличие от мальтозы, (1 4)-гликозидная связь имеет β-конфигу-рацию:

Целлобиоза является структурным компонентом целлюлозы. Интересно, что фермент α-глюкозидаза (мальтаза), расщепляющий мальтозу, неактивен по отношению к целлобиозе. Это объясняется различием в конфигурации гликозидной связи. Целлобиоза расщеп-ляется при помощи -глюкозидазы, которая в организме человека отсутствует. Поэтому целлобиоза и ее полимер целлюлоза в организ-ме человека не перерабатываются и не могут служить источником питания. В то же время жвачные животные употребляют в пищу растения, содержащие целлюлозу , так как в их пищеварительном тракте имеются бактерии, содержащие -глюкозидазу.

Восстанавливающие свойства мальтозы, лактозы и целлобиозы обусловлены наличием свободной полуацетальной гидроксильной группы, вследствие чего сохраняется способность к раскрытию цикла и образованию аномеров:

Таким образом, растворы восстанавливающих дисахаридов мутаротируют, но поскольку синтез природных дисахаридов с участием ферментов строго стереоспецифичен, гликозидная связь может находиться только в одной из возможных конфигураций
(α- или β-) и на ее стереохимию мутаротация не влияет. Кроме того, восстанавливающие дисахариды вступают в реакции с реактивами Бенедикта, Феллинга и Толленса.

Невосстанавливающие дисахариды.

Примером наиболее распространенных в природе невосстанавли-вающих дисахаридов является сахароза (свекловичный или тростни-ковый сахар). Молекула сахарозы состоит из остатков α-D-глюко-пиранозы и β-D-фруктофуранозы, соединенных друг с другом за счет взаимодействия обоих полуацетальных гидроксилов, т. е. (1 2)-гли-козидной связью:

В название невосстанавливающих дисахаридов один из моносахаридных остатков входит в общее название с суффиксом
-озил, а другой с суффиксом -озид. Если дисахарид состоит из остатков двух одинаковых моносахаридов, то не имеет значения, какой из них будет назван первым. Если же в состав дисахарида входят остатки различных моносахаридов, то название строится в соответствии с номенклатурным принципом: фрагменты моно-сахаридов располагают в алфавитном порядке. Таким образом, наз-вание сахарозы: α-D-глюкопиранозил-(1 2)-β-D-фруктофуранозид.

Отсутствие полуацетального гидроксила в молекуле сахарозы приводит к тому, что сахароза не имеет таутомерной оксо-формы и поэтому не обладает восстанавливающими свойствами, а ее растворы не мутаротируют.

Химические свойства дисахаридов.

Для восстанавливающих дисахаридов характерны многие реакции, в которые вступают моносахариды: образование гликозидов, простых и сложных эфиров , окисление и др. Некоторые процессы приведены на схеме 2:

Схема 2. Химические превращения мальтозы.

Однако в отличие от моносахаридов дисахариды способны к кислотному гидролизу, в результате которого разрывается гликозидная связь и образуются моносахариды. Так, при гидролизе сахарозы образуется смесь глюкозы и фруктозы:

Полученная смесь моносахаридов имеет левое вращение (39,5°), в то время как исходное вещество  сахароза  характеризуется противоположным углом вращения (+66,5°). Такое изменение знака связано с тем, что при гидролизе образуется фруктоза, имеющая угол вращения, равный –92°, и глюкоза, вращающаяся вправо на +52,5°. Разница между этими величинами и будет углом вращения смеси глюкозы и фруктозы. Изменение угла вращения под влиянием гидролиза называется инверсией (от лат. inversia  переворачивание), а смесь глюкозы и фруктозы, полученную при этом, называют инвертным сахаром или искусственным медом . Натуральный мед  природный инвертный сахар, который образуется в организме пчелы из сахарозы под влиянием фермента инвертазы .

К щелочному гидролизу дисахариды устойчивы.

Полисахариды.

Большинство углеводов встречается в природе в виде полисахаридов. Полисахариды (полиозы)  это высокомолекулярные соединения, состоящие из большого числа моносахаридных остатков, соединенных гликозидными связями. Общая формула полисахаридов (С 6 Н 10 О 5) n .

Макромолекулы полисахаридов отличаются друг от друга природой повторяющихся моносахаридных звеньев, длиной цепи и степенью разветвления. Относительная молекулярная масса полисахаридов варьирует в широких пределах: от нескольких тысяч до нескольких миллионов, так как любой образец полисахарида него-могенен по составу, а состоит из полимергомологов разной длины и молекулярной массы. Многие полисахариды образуют высокоупоря-доченные надмолекулярные структуры , препятствующие гидратации отдельных молекул , поэтому такие полисахариды (хитин , целлюлоза ) не только не растворяются, но и не набухают в воде.

Гомополисахариды.

К гомополисахаридам относятся полисахариды растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстрины) происхождения, состоящие из остатков моносахарида одного типа. Для большинства из них этим моносахаридом является D-глюкоза.

С учетом биологической роли гомополисахариды делятся на структурные и резервные . К резервным относятся крахмал и гликоген; к структурным  целлюлоза и хитин.

Резервные полисахариды.

Крахмал  это смесь двух полисахаридов (амилозы и амило-пектина), в состав которых входят остатки α-D-глюкопиранозы. Образуется в растениях в процессе фотосинтеза и содержится в клубнях, корнях, семечках. Цепь амилозы линейна и включает
200-1000 глюкозных остатков. Относительная молекулярная масса составляет  160000.

В водном растворе макромолекулярная цепь амилозы свернута в спираль, поэтому в воде амилоза не дает истинного раствора, а образует гидратированные мицеллы, которые при добавлении иода окрашиваются в синий цвет.

Амилопектин имеет разветвленное (звездообразное) строение. В отличие от амилозы амилопектин при набухании в водных растворах образует клейстер В основной цепи амилопектина остатки α-D-глюкопиранозы связаны α-(1 4)-гликозидными связями, а в местах разветвления  α-(1 6)-гликозидными связями:

Относительная молекулярная масса амилопектина в сотни больше чем у амилозы и составляет 1-6 млн. В воде амилопектин также образует коллоидные растворы, однако при добавлении иода раствор окрашивается не в синий, а в красно-фиолетовый цвет.

Гидролиз крахмала при нагревании в присутствии минеральных кислот приводит к образованию различных продуктов:

где m  n.

Растворимый крахмал  это частично гидролизованный полиса-харид. Его молекулярная масса несколько меньше, чем обычного крахмала. Растворимый крахмал растворяется в горячей воде, с йодом дает синее окрашивание.

Декстрины  это полисахариды с промежуточной длиной цепи. Они являются продуктами неполного гидролиза крахмала. Они хорошо растворяются в холодной воде и с йодом окрашиваются от фиолетового до желтого цвета. Промышленный способ получения декстринов – нагревание крахмала до 180-200 0 С. Например, процесс хлебопечения состоит в превращении нерастворимого крахмала в растворимые и гораздо легче усваиваемые организмом декстрины.

Блестящая поверхность накрахмаленного белья после глажения горячим утюгом также объясняется образованием декстринов.

Крахмал  ценный пищевой продукт. Применяется он и в химической промышленности. Например, кислотный гидролиз крахмала (при кипячении) служит промышленным методом получения глюкозы. Крахмал является сырьем для производства этилового и н- бутилового спиртов, ацетона, молочной и лимонной кислот, глицерина и других продуктов. Он используется для приклеивания бумаги и картона, производства декстринов и клеев.

В пищеварительном тракте гидролиз основных компонентов крахмала протекает под действием ферментов. Гидролиз амилозы протекает под действием фермента α-амилазы , который присутствует в слюне и соке поджелудочной железы. Этот фермент гидролизует
α-(1 4)-гликозидные связи с образованием в конечном итоге смеси глюкозы и мальтозы. α-(1 6)-гликозидные связи, находящиеся в точках ветвления, гидролизуются при помощи фермента α-(1 6)-глюкозидазы . Конечными продуктами гидролиза также являются глюкоза и мальтоза.

В животных организмах функциональным аналогом растительного крахмала является гликоген . Особенно много его содержится в печении в мышцах. Относительная молекулярная масса углевода составляет  100 млн. По структуре гликоген близок к амилопектину и отличается от него большей степенью разветвлен-ности. В пищеварительном тракте гликоген легко гидролизуется амилазами, что позволяет проводить быструю регенерацию глюкозы в организме человека в случае стрессовых ситуаций, при физических и умственных нагрузках. В клетках гидролиз гликогена осуществляется фосфоролитическим путем при помощи фермента фосфорилазы , которая последовательно отщепляет молекулы глюкозы в виде
1-фосфата.

В целом, функцию резервных полисахаридов можно представить следующим образом: если в клетке имеется избыток глюкозы, то под действием соответствующих ферментов ее молекулы присоединяются к молекулам крахмала или гликогена; если же возникает метаболическая потребность в глюкозе, то происходит ее фермента-тивное отщепление от полисахаридов.

В микроорганизмах (дрожжах, бактериях) роль резервных полисахаридов выполняют декстраны . Они также представляют собой полисахариды с разветвленной цепью и состоят из остатков
D-глюкозы, но отличаются от крахмала и гликогена тем, что структурные единицы их остова связаны главным образом α-(1 6)-гликозидными связями. Декстраны, синтезируемые бактериями, обитающими на поверхности зубов, являются компонентами зубного налета.

Структурные полисахариды.

Целлюлоза , или клетчатка (от лат. cellula – клетка),  главная составная часть оболочек растительных клеток, выполняющая функции конструкционного материала. Древесина состоит из целлюлозы примерно на 50%, а волокна хлопчатника (очищенная вата) представляет собой почти чистую целлюлозу (до 96%).

Целлюлоза представляет собой полисахарид, который состоит из остатков β-D-глюкопиранозы, связанных между собой -(1 4)-гли-козидными связями:

Относительная молекулярная масса целлюлозы составляет от 400 тысяч до 1-2 млн. Макромолекулы целлюлозы имеют линейное строение и образуют плотную кристаллическую структуру. Этим объясняется высокая устойчивость целлюлозы к механическим и химическим воздействиям, а также крайне низкая растворимость в воде, спирте, эфире, ацетоне и других растворителях.

В организме человека и большинства млекопитающих целлюлоза не расщепляется ферментами желудочно-кишечного тракта, но имеет большое значение: выступает в роли балласта и помогает пищеварению, механически очищая слизистые оболочки желудка и кишечника. Так, клетчатка способствует выведению из организма избытка холестерина. Объясняется это тем, что клетчатка растительной пищи адсорбирует стерины и препятствует их всасы-ванию. Кроме того, клетчатка играет важную роль в нормализации полезной кишечной микрофлоры.

При длительном нагревании целлюлозы с минеральными кислотами, можно получить промежуточные продукты гидролиза , вплоть до D-глюкозы:

где m  n.

Полисахарид хитин служит главным структурным элементом твердого наружного скелета насекомых и ракообразных. Он представляет собой гомополимер N-ацетил-D-глюкозамина, остатки которого связаны межу собой -(1 4)-гликозидными связями, и по структуре близок к целлюлозе:

Как и целлюлоза, хитин нерастворим в воде и его цепи имеют кристаллическую упаковку.

К числу структурных гомополисахаридов относятся также инулин , построенный из остатков D-фруктозы (редкий случай, когда полисахарид построен из остатков кетоз) и пектиновые вещества , состоящие из остатков уроновых кислот (например, галактуроновой). Пектиновые вещества содержатся в растительных соках, плодах (яблоки, груши, лимон) и овощах (свекла, морковь). Современными исследованиями установлена возможность их использования с терапевтической целью при заболеваниях желудочно-кишечного тракта. Так, препарат «плантаглюцид», получаемый из подорожника, используется при язвенной болезни.

Гетерополисахариды.

Гетерополисахариды представляют собой полимеры, построен-ные из моносахаридов различных типов и их производных. Чаще всего гетерополисахариды состоят из двух различных мономеров, расположенных повторяющимся образом. Важнейшими представите-лями гетерополисахаридов в органах и тканях животных и человека являются гликозаминогликаны (мукополисахариды ). Они состоят из неразветвленных цепей, содержащих аминосахара и уроновые кислоты , и выполняют важные биологические функции. В частности, они являются основой углеводных компонентов соединительных тканей (хрящей, сухожилий и др.), входят в состав костей и обеспечивают прочность и упругость органов.

Важную биологическую роль играет гиалуровая кислота : с ней связаны процессы оплодотворения, защита от проникновения микро-организмов, она находится в стекловидном теле глаза, в полости суставов и т. д. Повторяющейся единицей гиалуроновой кислоты служит дисахарид, состоящий из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных -(1 3)-гликозидной связью. В свою очередь, дисахаридные остатки соединены -(1 4)-глико-зидной связью:

Гиалуроновая кислота имеет высокую молекулярную массу –
2-710 6 , ее растворы обладают высокой вязкостью.

Другой мукополисахарид, обнаруженный в составе клеточных оболочек и основного внеклеточного вещества,  это хондроитин . По своей структуре хондроитин почти идентичен гиалуроновой кислоте: единственное различие состоит в том, что вместо остатков N-ацетил-D-глюкозамина он содержит остатки N-ацетил-D-галактозамина.

Такой дисахарид называется N -ацетилхондрозин :

Сернокислые эфиры хондроитина называются хондроитинсуль-фатами . Различают хондроитин-4- и хондроитин-6-сульфаты, в которых сульфатная группа образует сложноэфирную связь с гидроксильной группой N-ацетил-D-галактозамина соответственно при С-4 и при С-6. Они являются основными структурными компонентами хрящевой и костной ткани , роговицы и других видов соединительной ткани позвоночных. Молекулярная масса хондро-итинсульфатов колеблется в диапазоне от 10 до 60 тысяч.

В животных организмах также широко распространен гепарин , который был выделен из печени, тканей сердца и легких, а также из мышц. Он является природным антикоагулянтом крови и поэтому играет важную биологическую роль.

Гепарин имеет более сложное строение: чередующимися звеньями являются дисахариды, в состав которых входят остатки
D-глюкозамина, связанные -(1 4)-гликозидной связью с остатками либо D-глюкуроновой, либо L-идуроновой кислоты. В свою очередь, дисахариды связаны между собой -(1 4)-связью, если дисахарид оканчивается D-глюкуроновой кислотой и -(1 4)-связью  если
D-идуроновой кислотой.

Большинство аминогрупп гепарина сульфатированы, некоторые – ацетилированы. Кроме того, у ряда остатков L-идуроновых кислот су-льфатные группы содержатся при С-2, а у глюкозаминных – при С-6.

Структурным элементом стенок кровеносных сосудов является гепаритинсульфат , который содержит аналогичные дисахаридные единицы, но имеет в своем составе больше N-ацетильных групп и меньше сульфатных групп.

Химические свойства полисахаридов.

Химические свойства полисахаридов в основном связаны с наличием ОН-групп и гликозидных связей. Доля свободных альдегидных групп в макромолекуле сравнительно невелика, поэтому полисахариды восстанавливающих свойств практически не проявляют.

Из химических свойств полисахаридов наибольшее значение имеют реакции гидролиза и образование производных за счёт реакций макромолекул по гидроксильным группам.

Полисахариды устойчивы к гидролизу в щелочной среде, но при действии концентрированных растворов щелочей могут образовывать алкоголяты. Так, например, получают щелочную целлюлозу:

В кислой среде при неполном гидролизе образуются олигосахариды, в том числе и дисахариды. Полный гидролиз полисахаридов ведет к образованию моносахаридов. Способность полисахаридов к гидролизу увеличивается в ряду: целлюлоза
И
H +
з целлюлозы (отходов деревообрабатывающей промышленнос-ти) в результате кислотного гидролиза и последующего сбраживания образующейся глюкозы получают этанол (называемый «гидролизным спиртом»):

(C 6 H 10 O 5) n + nH 2 O nC 6 H 12 O 6

C 6 H 12 O 6 2C 2 H 5 OH + 2CO 2

Среди производных полисахаридов наибольшее практическое значение имеют простые и сложные эфиры. Такая химическая модификация полимеров не сопровождается существенным измене-нием степени полимеризации макромолекул.

Сложные эфиры целлюлозы образуются при действии на целлюлозу минеральных или органических кислот и их ангидридов. Так, при взаимодействий целлюлозы со смесью азотной и серной кислот можно получить нитраты целлюлозы:

В зависимости от числа гидроксильных групп в глюкозном звене, вступивших в реакцию этерификации, образуются различные эфиры: моно-, ди- и тринитрат целлюлозы. Смесь моно- и динитрата целлюлозы называют колоксилином , а тринитрат целлюлозы – пироксилином . На основе нитратов целлюлозы (нитроцеллюлозы) получают различные взрывчатые вещества, например, порох. Нитраты целлюлозы также служат основой для получения нитролаков и эмалей.

При взаимодействии целлюлозы с уксусной кислотой (в присутствии серной кислоты) или уксусным ангидридом образуется ацетат целлюлозы. Наибольшее промышленное значение получил полный эфир  триацетат целлюлозы  называемый искусственным шелком :

Ацетаты целлюлозы применяют также для получения пластмасс, фото- и кинопленки, специальных лаков.

Из простых эфиров целлюлозы особое значение получили метил-, этил- и бутилцеллюлоза. Они образуются при действии галоген-алканов на щелочную целлюлозу. Например:

Углеводы – многоатомные альдегиды или кетоны. общая формулу Cm(H2O)n

По способности к гидролизу они классифицируются на три группы:

1) моносахариды (альдозы, кетозы);

2) олигосахариды(ди, три- сахариды)

3) полисахариды.(гомо и гетерополисахариды)

Моносахариды можно рассматривать как производные многоатомных спир- тов,

карбонильная группа находится в конце цепи, то моносахарид представляет собой

альдегид и называется а л ь д о з о й; при любом другом положении этой группы

моносахарид является кетоном и называется кетозой.

Простейшие представители моносахаридов – т р и о з ы: Глицеральдегид и

Диоксиацетон:

Олигосахариды–углеводы, молекулы которых содержат от

2 до 10 остатков моносахаридов, соединенных гликозидными связями. В

соответствии с этим различают дисахариды, трисахариды и т.д.

Дисахариды–сложные сахара, каждая молекула которых при гидро- лизе

распадается на две молекулы моносахаридов. Дисахариды наряду с

полисахаридами являются одними из основных источников углеводов в пище

человека и животных. По строению дисахариды–это гликозиды, в которых 2

молекулы моносахаридов соединены гликозидной связью.

Среди дисахаридов наиболее широко

известны мальтоза, лактоза и

сахароза.

Гомополисахариды

По своему функциональному назначению гомополисахариды могут быть разделены

на две группы: структурные и резервные полисахариды. Важным структурным

гомополисахаридом является целлюлоза, а главными ре- зервными–гликоген и

крахмал (у животных и растений соответственно).

Гетерополисахариды

Состоят из остатков Д – глюкозы, Д – галактозы и Д – маннозы

Важнейшие представители гетерополисахаридов в органах и тканях –

гликозаминогликаны (мукополисахариды)

Функции:1) Энергетическая (при окислении 1 г ---- 16,9 кДж)

2) Структурная (все оранизмы используют углеводы для построения скелкта:

хитин – у насекомых, клетка – у растений)

3) Регуляторная (глюкоза регулирует содержание гормонов)

4) Защитная (углеводы,входящие в состав мукополисахаридов и гликопротеидов,

обеспечивает защиту пдлежаих тканей от механического воздействия.

5) Анаболическая (синтез липидов)

6) Резервная (гликоген)

7) Рецепторная (в состав большинства рецепторов клетки входят углеводные

фрагменты.

8) Иммунологическая (в состав большинства образуемых антител входят

углеводы)

9) ферментативная

10) защитная(в состав синовиальной жидкости и соедин ткани)

11) резервную функцию (крахмал, гликоген), учавствуют в осмотических

процессах, обладают антикоагулянтными свойствами (гепарин), необходимы

для нормального окисления белков и липидов.

Углеводы. Моно- , ди - и полисахариды, их характерные реакции.

Углеводы – это природные соединения, имеющие в подавляющем большинстве состав C n (H 2 O ) m . Их подразделяют на низкомолекулярные углеводы и продукты их поликонденсации.

Моносахариды – мономеры, из остатков которых состоят углеводы более сложного строения.

Олигосахариды – олигомеры, содержащие от 2 до 10 моносахаридных остатков.

Полисахариды – полимеры, включающие до нескольких тысяч моносахаридных звеньев.

Моносахариды .

Строение и классификация .

Моносахариды – это полигидроксикарбонильные соединения, в которых каждый атом углерода (кроме карбонильного) связан с группой ОН. Общая формула моносахаридов – С n (H 2 O ) n , где n =3-9.

По химическому строению различают:

- альдозы моносахариды, содержащие альдегидную группу;

- кетозы моносахариды, содержащие кетонную группу (как правило, в положении 2).

В зависимости от длины углеродной цепи моносахариды делятся на триозы , тетрозы , пентозы, гексозы и т.д. Обычно моносахариды классифицируют с учетом сразу двух этих признаков, например:

В природе встречаются производные моносахаридов, содержащие аминогруппу (аминосахара ), карбоксильную группу (сиаловые кислоты, аскорбиновая кислота) , а также атом Н вместо одной или нескольких групп ОН (дезоксисахара ).

Стереоизомерия .

Все моносахариды (кроме дигидроксиацетона ) содержат хиральные атомы углерода и имеют стереоизомеры. Простейшая альдоза , глицериновый альдегид, содержит один хиральный атом С и существует в виде двух оптических изомеров – D и L :

По мере увеличения длины цепи количество стереоизомеров у альдогексоз растет. В соответствии с числом хиральных центров существует 4 стереоизомерных альдотетрозы , 8 альдопентоз , 16 альдогексоз и т.д. В зависимости от конфигурации наиболее удаленного от карбонильной группы хирального атома С все моносахариды делят на два стереохимических ряда – D -моносахариды и L -моносахариды:

Подавляющее большинство природных моносахаридов принадлежит к D -ряду.

Родоначальником ряда D -альдоз является D -глицериновый альдегид. Остальные D -альдозы могут быть построены на основе D -глицеральдегида путем последовательной вставки фрагмента СНОН сразу после карбонильной группы. Стереоизомерные альдозы имеют тривиальные названия.

Уточним стереоизомерные отношения в ряду D -альдоз . Между собой D -альдозы с одинаковым числом атомов углерода (D -альдотетрозы , D -альдопентозы , D -альдогексозы и т.д.) являются диастереомерами . Среди них выделяют особый тип диастереомеров , который называют эпимерами .

Эпимеры – это диастереомеры , которые отличаются по конфигурации только одного хирального центра.

Например, D -рибоза и D -арабиноза являются эпимерами , так как отличаются конфигурацией только хирального атома углерода в положении 2. D -глюкоза имеет несколько эпимеров : D - маннозу по С-2, D -аллозу по С-3, D -галактозу по С-4, L -иодозу по С-5.

Каждая из D -альдоз имеет энантиомер , относящийся к L -ряду, который может быть построен аналогично D -ряду на основе L -глицеральдегида . Энантиомером D -глюкозы является L -глюкоза, D -маннозы – L -манноза и т.д.

Ряд D -кетоз может быть построен на основе простейшей кетозы – дигидроксиацетона . Названия кетоз образуются из названий соответствующих альдоз путем введения суффикса «ул ». Для некоторых кетоз утвердились тривиальные названия.

Дигидроксиацетон не содержит хирального атома С и не имеет стереоизомеров. Остальные кетозы являются хиральными соединениями.

В природе широко распространены гексозы (D -глюкоза, D -галактоза, D -манноза , D -фруктоза) и пентозы (D -рибоза, D -ксилоза, D -арабиноза). Среди производных моносахаридов наиболее распространенными являются аминосахара D -глюкозамин и D -галактозамин и дезоксисахар 2-дезокси- D -рибоза.

Цикло-оксо-таутомерия .

Известно, что альдегиды способны присоединять спирты с образованием полуацеталей :

Карбонильная и гидроксильная группы моносахаридов взаимодействуют внутримолекулярно с образованием циклического полуацеталя :

При этом возникает новый хиральный центр – бывший карбонильный, а теперь аномерный атом углерода. Наиболее устойчивы циклические полуацетали , содержащие шестичленный (пиранозный ) или пятичленный (фуранозный ) циклы. Они образуются при взаимодействии альдегидной группы с гидроксильной группой в положении 5 или 4 моносахарида соответственно. На рисунке представлена схема образования циклических форм D -глюкозы:

Возникновение нового хирального центра приводит к появлению 2-х стереоизомеров для каждой из циклической форм - a - и b - аномеров .

Аномеры – это эпимеры , которые различаются по конфигурации аномерного атома углерода.

У a - аномера конфигурация аномерного центра совпадает с конфигурацией концевого хирального атома С, у b -аномера она противоположна.

Циклические формы моносахаридов изображают с помощью формул Хеуорса . Молекулу представляют в виде плоского цикла, перпендикулярного плоскости рисунка. Заместители, находившиеся в формуле Фишера слева, располагают над плоскостью цикла, справа – под плоскостью. Для определения положения группы СН 2 ОН в формуле Фишера предварительно делают две перестановки.


В кристаллическом состоянии моносахариды находятся в одной из циклических форм. При растворении образуется равновесная смесь линейной и циклических форм. Их относительное содержание определяется термодинамической стабильностью. Циклические, особенно пиранозные формы, энергетически более выгодны для большинства моносахаридов. Например, в растворе D -глюкозы преобладает b - D -глюкопираноза :

Существование равновесия между линейной и циклическими формами моносахаридов получило название цикло-оксо-таутомерии .

Растворение кристаллического моносахарида сопровождается постепенным таутомерным превращением, которое заканчивается установлением таутомерного равновесия. Каждая таутомерная форма оптически активна и имеет свою величину удельного вращения. Поэтому за таутомерным превращением можно следить по изменению удельного вращения раствора, которое заканчивается с установлением равновесия. Явление изменения удельного вращения свежеприготовленного раствора моносахарида называют мутаротацией . Явление мутаротации – одно из доказательств существования цикло-оксо-таутомерии у моносахаридов.

Конформационное строение .

Основой строения пиранозных форм моносахаридов является тетрагидропиран , для которого возможны две энергетически неравноценные конформации кресла.

1 С 4 4 С 1

Более стабильной является конформация с наименьшим числом объемистых заместителей в аксиальном положении. Для большинства D -альдогексоз это конформация 4 С 1 , в которой группа CH 2 OH занимает экваториальное положение.

Рассмотрим конформационное строение b - D -глюкопиранозы . Более выгодной для этой формы D -глюкозы является конформация 4 С 1 , в которой все заместители находятся в экваториальном положении.

У a - аномера гликозидный гидроксил в этой конформации будет занимать аксиальное положение. Поэтому в равновесной смеси таутомеров D -глюкозы преобладает b - аномер .

b - D -глюкопираноза – единственная D -гексоза с экваториальным положением всех заместителей. Как следствие этого, D -глюкоза - наиболее распространенный в природе моносахарид. Из всего семейства D -альдогексоз в природе встречаются только эпимеры D -глюкозы – D -галактоза и D -манноза , у которых число заместителей, занимающих аксиальное положение минимально.

На относительную устойчивость a - и b - форм моносахаридов кроме пространственных факторов влияют диполь-дипольные взаимодействия. Например, при замещении в молекуле D -глюкопиранозы полуацетального гидроксила на алкоксильную группу более выгодной становится a - аномерная форма, в которой группа OR занимает аксиальное положение. Стремление полярных групп при аномерном атоме углерода в пиранозном цикле занять аксиальное положение называют аномерным эффектом. Одно из возможных объяснений аномерного эффекта состоит в неблагоприятном диполь-дипольном взаимодействии между диполем атома кислорода цикла (с учетом ориентации его свободных электронных пар) и диполем экзоциклической связи С- X , которые в b - аномере параллельны, вследствие чего отталкивание между ними сильнее, чем в a -аномере .

Величина аномерного эфекта зависит от природы растворителя. Например, сольватация группы ОН в водных растворах приводит к ослаблению аномерного эффекта у свободных моносахаридов.

Химические свойства .

Химические свойства моносахаридов определяются наличием карбонильной группы (в ациклической форме), полуацетального гидроксила (в циклических формах) и спиртовых ОН групп.

Восстановление .

При восстановлении карбонильной группы альдоз образуются многоатомные спирты – глициты .

В лабораторных условиях для вос c тановления используют NaBH 4 . В промышленности применяют каталитическое гидрирование. Таким образом получают заменители сахара: из D -глюкозы – сорбит (D -глюцит ), из D -ксилозы – ксилит.

Восстановление альдоз приводит к «уравниванию» функциональных групп на концах цепи. В результате из некоторых альдоз (эритрозы , рибозы, ксилозы, аллозы , галактозы) образуются оптически неактивные мезо-соединения , например:

Разные альдозы при восстановлении могут дать один и тот же спирт.

Такая конфигурационная взаимосвязь между глицитами использовалась для установления стереохимической конфигурации моносахаридов.

При восстановлении кетоз из карбонильной группы возникает новый хиральный центр и образуется смесь неравных количеств диастереомерных спиртов (эпимеров по С-2).

Эта реакция доказывает, что D -фруктоза, D -глюкоза и D -манноза имеют одинаковые конфигурации хиральных центров С-2, С-3, и С-4.

Окисление .

Вследствие своей полифункциональности альдозы окисляются по-разному при действии различных окислителей. При этом может быть окислена карбонильная группа, оба конца углеродной цепи или расщеплена связь С-С .

Получение гликоновых кислот .

При мягком окислении альдоз , например, под действием бромной воды, затрагивается только карбонильная группа и образуются гликоновые кислоты , которые очень легко образуют пяти- и шестичленные лактоны.

Кетозы в этих условиях не окисляются и могут быть таким образом выделены из смесей с альдозами .

Альдозы и кетозы дают реакции, характерные только для соединений, содержащих альдегидную группу: они восстанавливают в щелочной среде катионы металлов Ag + (Ag (NH 3 ) 2 OH реактив Толенса ) и Cu 2+ (комплекс Cu 2+ с тартрат-ионом – реактив Фелинга ). При этом гликоновые кислоты образуются в незначительном количестве, так как в щелочной среде протекает деградация углеродного скелета моносахаридов.

Альдоза + Ag ( NH 3 ) 2 + ® гликоновая кислота + Ag ¯

Альдоза + Cu 2+ ® гликоновая кислота + Cu 2 O ¯ + продукты деструктивного окисления

Сахара, способные восстанавливать реактивы Толенса и Фелинга , называют восстанавливающими . Кетозы проявляют восстанавливающие свойства за счет изомеризации в щелочной среде в альдозы , которые и взаимодействуют далее с окислителем. Процесс превращения кетозы в альдозу происходит в результате енолизации . Образующийся из кетозы енол является общим для нее и 2-х альдоз (эпимеров по С-2). Так, в слабощелочном растворе в равновесии с D -фруктозой находятся ендиол , D -глюкоза и D -манноза .

Взаимопревращения в щелочном растворе между альдозами , эпимерами по С-2, называют эпимеризацией .

Получение гликаровых кислот.

При действии разбавленной азотной кислоты окисляется оба конца углеродного скелета альдоз и образуются гликаровые кислоты .

При образовании гликаровых кислот, как и в случае глицитов , происходит «уравнивание» функциональных групп на концах цепи и из некоторых альдоз образуются мезо-соединения .

Окисление кетоз азотной кислотой протекает с расщеплением С-С связей.

Окисление виц-диольной группировки.

Моносахариды содержат виц-диольную группировку, которая претерпевает окислительное расщепление под действием иодной кислоты или тетраацетата свинца.

HOCH 2 ( CHOH) n CHO + (n+1) HIO 4 ® (n+1) HCOOH + HCHO + (n+1) HIO 3

Реакция протекает количественно. По составу продуктов и количеству израсходованной иодной кислоты получают ценную информацию о строение моносахаридов и их производных.

Получение гликозидов.


Циклические формы моносахаридов содержат несколько групп ОН, одна из которых – гликозидный (полуацетальный ) гидроксил, отличается повышенной склонностью к реакциям нуклеофильного замещения.

Известно, что в присутствии кислотных катализаторов полуацетали реагируют со спиртами. При этом происходит нуклеофильное замещение полуацетального гидроксила и образуются полные ацетали .

Аналогично реагирует гликозидный гидроксил в альдозах и кетозах . Спиртовые ОН группы при этом не затрагиваются. Продукты замещения гликозидного гидроксила называют гликозидами (гликопиранозидами или гликофуранозидами в зависимости от размера цикла). Например, при пропускании через раствор D-глюкозы в метаноле газообразного HCl образуется смесь метилглюкозидов , соответствующих разным таутомерным формам D-глюкозы (двум пиранозным и двум фуранозным ). В условиях термодинамического контроля в реакционной смеси преобладают более стабильные метилпиранозиды .


Метил- a - D -глюкопиранозид обладает большей термодинамической стабильностью, чем b - аномер (аномерный эффект) и поэтому образуется в большем количестве. Гликозиды существуют только в циклической форме, поэтому a - и b - аномеры гликозидов не могут спонтанно переходить друг в друга в результате таутомерных превращений. Гликозиды не имеют свободной альдегидной группы и являются невосстанавливающими сахарами .

Как полные ацетали гликозиды гидролизуются в условиях кислотного катализа и устойчивы в разбавленных растворах щелочей. Механизм кислотного гидролиза включает протонирование гликозидного кислорода, расщепление гликозидной С-О связи с образованием гликозил-катиона , который затем атакуется молекулой воды.


Расщепление гликозидной связи важно с биологической точки зрения, поскольку многие природные соединения являются гликозидами. Широко используется ферментативный гидролиз гликозидов, преимущество которого заключается в его специфичности. Определенные ферменты гидролизуют только a - или только b - гликозидные связи., что может быть использовано для установленияконфигурации гликозидной связи.

Молекулу гликозида рассматривают как состоящую из двух частей – сахарной части и агликона :

В качестве агликона в природных гликозидах могут выступать спирты, фенолы, стероиды, сами моносахариды. Перечисленные агликоны связаны с сахарной частью через атом кислорода,поэтому такие гликозиды называют О-гликозидами . В природе широко распространены N -гликозиды , в которых агликонами являются азотистые основания. К ним относятся нуклеозиды – структурные единицы нуклеиновых кислот.

Получение простых эфиров.

Метиловые эфиры по спиртовым группам ОН получают действием на моносахариды диметилсульфата в водном растворе щелочи или метилиодида в присутствии оксида серебра. Эти методы являются модификациями синтеза Вильямсона . При этом в реакцию вступает и гликозидный гидроксил. Простые эфиры по спиртовым группа устойчивы к гидролизу, в то время как гликозидная связь легко расщепляется в кислой среде.


Приведенная последовательность реакций (метилирование , затем гидролиз) используется для определения размера цикла в моносахаридах. Неметилированной остается группа ОН, которая участвовала в образовании циклического полуацеталя . Окисление образовавшейся тетраметил - D -глюкозы азотной кислотой в жестких условиях дает сначала кетокислоту, а затем триметоксиглутаровую и диметоксиянтарную кислоты.

Состав продуктов окисления указывает на то, что кетогруппа , а, следовательно, и свободная гидроксигруппа находились в положении 5. Это означает, что цикл был пиранозным .

Получение сложных эфиров .

Гидроксильные группы моносахаридов легко этерифицируются действием ангидриридов и хлорангидридов карбоновых кислот. Чаще всего используют ацетилирование уксусным ангидридом в присутствии кислотного (H 2 SO 4 , ZnCl 2 ) или основного (пиридин, С H 3 COONa ) катализатора.



Соотношение a - и b - аномеров зависит от условий проведения реакции. В условиях термодинамического контроля (высокая температура, кислотный катализатор) преобладает более стабильный a - аномер (аномерный эффект). В условиях кинетического контроля (температура ниже 0 0 С, основной катализатор) преимущественно образуется b - аномер , поскольку экваториальная группа ОН ацилируется с большей скоростью, чем аксиальная.

Для удаления ацетильных групп используют переэтерификацию действием метилата натрия в метаноле.

Получение производных по карбонильной группе. Образование озазонов .

Моносахариды вступают во многие реакции нуклеофильного присоединения по карбонильной группе, характерные для альдегидов и кетонов: присоединяют HCN , NH 2 OH , фенилгидразин. При действии избытка фенилгидразина образуются озазоны .

Эпимеры по С-2, например, D -глюкоза и D -манноза , дают один и тот же озазон , что используется для установления стереохимической конфигурации моносахаридов. Кетозы также образуют озазоны . D -фруктоза дает такой же озазон , что и D -глюкоза.

Озазоны – желтые кристаллические вещества, используются для идентификации сахаров.

Синтез моносахаридов.

Полный синтез моносахаридов – очень сложная задача, так как при его осуществлении возникает необходимость разделения оптических изомеров. Обычно доступные из природных источников моносахариды используют для получения менее доступных сахаров. Для этого применяют методы деградации и наращивания цепи, изменение конфигурации хиральных центров. Методы наращивания и деградации цепи, позволяющие производить переходы триоза ® тетроза ® пентоза ® гексоза и обратные превращения, имеют большое значение для установления конфигурации моносахаридов.

Наращивание цепи по методу Килиани-Фишера .

Метод включает присоединение HCN по карбонильной группе, гидролиз циангидринов до гликоновых кислот, лактонизацию образующейся кислоты, восстановление лактонов до альдоз . В результате образуются две альдозы – эпимеры по C -2, так как на стадии образования циангидрина появляется новый хиральный центр и образуются два диастереомера .

Деградация по Волю

Образование оксимов и их последующие превращения позволяют укоротить цепь моносахарида на один атом углерода. Процесс упрощенно может быть представлен следующей схемой.

При этом из эпимеров по С-2 образуются одинаковые альдозы (из D -глюкозы и D -маннозы – D -арабиноза).

Деградация по Руффу .

Метод состоит в окислении альдозы в гликоновую кислоту с последующим окислительным декарбоксилированием .

Дисахариды .

Строение .

Дисахариды состоят издвух моносахаридных остатков, связанных гликозидной связью. Их можно рассматривать как О-гликозиды , в которых агликоном является остаток моносахарида.

Возможно два варианта образования гликозидной связи:

1) за счет гликозидного гидроксила одного моносахарида и спиртового гидроксила другого моносахарида;

2) за счет гликозидных гидроксилов обоих моносахаридов.

Дисахарид, образованный первым способом, содержит свободный гликозидный гидроксил, сохраняет способность к цикло-оксо-таутомерии и обладает восстанавливающими свойствами .

В дисахариде, образованном вторым способом, нет свободного гликозидного гидроксила. Такой дисахарид не способен к цикло-оксо-таутомерии и является невосстанавливающим .

В природе в свободном виде встречается незначительное число дисахаридов. Важнейшими из них являются мальтоза, целлобиоза , лактоза и сахароза .

Мальтоза содержится в солоде и образуется при неполном гидролизе крахмала. Молекула мальтозы состоит из двух остатков D -глюкозы в пиранозной форме. Гликозидная связь между ними образована за счет гликозидного гидроксила в a - конфигурации одного моносахарида и гидроксильной группы в положении 4 другого моносахарида.

Мальтоза – это восстанавливающий дисахарид. Она способна к таутомерии и имеет a - и b - аномеры .

Целлобиоза – продукт неполного гидролиза целлюлозы. Молекула целлобиозы состоит из двух остатков D -глюкозы, связанных b -1,4-гликозидной связью. Целлобиоза – восстанавливающий дисахарид.


Различие между мальтозой и целлобиозой состоит в конфигурации гликозидной связи, что отражается на их конформационном строении. Гликозидная связь в мальтозе имеет аксиальное, в целлобиозе – экваториальное положение. Конформационное строение этих дисахаридов служит первопричиной линейного строения макромолекул целлюлозы и спиралеобразного строения амилозы (крахмал), структурными элементами которых они являются.

Лактоза содержится в молоке (4-5%). Молекула лактозы состоит из остатков D -галактозы и D -глюкозы, связанных b -1,4-гликозидной связью. Лактоза – восстанавливающий дисахарид

Сахароза содержится в сахарном тростнике, сахарной свекле, соках растений и плодах. Она состоит из остатков D -глюкозы и D -фруктозы, которые связаны за счет гликозидных гидроксилов. В составе сахарозы D -глюкоза находится в пиранозной , а D -фруктоза – в фуранозной форме. Сахароза – невосстанавливающий дисахарид.

Химические свойства .

Дисахариды вступают в большинство реакций, характерных для моносахаридов: образуют простые и сложные эфиры, гликозиды, производные по карбонильной группе. Восстанавливающие дисахариды окисляются до гликобионовых кислот. Гликозидная связь в дисахаридах расщепляется под действием водных растворов кислот и ферментов. В разбавленных растворах щелочей дисахариды устойчивы. Ферменты действуют селективно, расщепляя только a - или только b - гликозидную связь.

Последовательность реакций – окисление, метилирование , гидролиз, позволяет установить строение дисахарида.

Окисление дает возможность определить, остаток какого моносахарида находится на восстанавливающем конце. Метилирование и гидролиз дают информацию о положении гликозидной связи и размерах цикла моносахаридных звеньев. Конфигурация гликозидной связи (a или b ) может быть определена с помощью ферментативного гидролиза.

Полисахариды .

Полисахариды – полимеры, построенные из моносахаридных остатков, связанных гликозидными связями. Полисахариды могут иметь линейное или разветвленное строение. Полисахариды, состоящие их одинаковых моносахаридных остатков, называют гомополисахаридами , из остатков разных моносахаридов – гетерополисахаридами .

Крахмал – полисахарид растительного происхождения. Его основная биологическая функция – запасное вещество растений. Крахмал представляет собой смесь двух полисахаридов – амилозы (10-20%) и амилопектина (80-90%)

Амилоза – линейный гомополисахарид , состоящий из остатков D -глюкопиранозы , связанных a -1,4-гликозидными связями. Структурным элементом амилозы является дисахарид мальтоза.

Цепь амилозы включает от 200 до 1000 моносахаридных единиц. Вследствие аксиального положения гликозидной связи макромолекулаамилозы свернута в спираль.

Амилопектин – разветвленный гомополисахарид , построенный из остатков D -глюкопиранозы , которые связаны в основной цепи a -1,4-гликозидными, а в местах разветвлений - a -1,6-гликозидными связями. Разветвления расположены через каждые 20-25 моносахаридных остатков.

Крахмал набухает и растворяется в воде, образуя вязкие растворы (гели). Химические свойства крахмала аналогичны свойствам моно- и дисахаридов. Крахмал гидролизуется под действием кислот (но не щелочей) и фермента амилазы. Конечным продуктом гидролиза крахмала является D -глюкоза.

(C 6 H 10 O 5 ) n ® (C 6 H 10 O 5) m ® C 12 H 22 O 11 ® C 6 H 12 O 6

крахмалдекстринымальтоза D -глюкоза

n > m

За счет спиралеобразной конформации амилоза способна образовывать соединения включения с молекулярным иодом . Комплексы крахмала с иодом имеют интенсивную синюю окраску. Реакция используется как качественная на иод и крахмал.

Целлюлоза – самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Целлюлоза – линейный гомополисахарид , построенный из остатков D -глюкопиранозы , связанных b -1,4-гликозидными связями. Структурным элементом целлюлозы является целлобиоза .

Гликозидная связь в целлюлозе имеет экваториальное положение. Это определяет линейную конформацию целлюлозы, которая стабилизирована водородными связями.

Макромолекулы целлюлозы образуют волокна. В отличие от крахмала целлюлоза в воде не набухает и не растворяется. Для перевода целлюлозы в растворимую форму необходима её химическая модификация.

Целлюлоза набухает в растворах щелочей, что связано с образованием алкоксидов .

[C 6 H 7 O 2 (OH) 3 ] x + x NaOH ® x + x H 2 O

Растворение целлюлозы в реактиве Щвейцера [ Cu (NH 3 ) 4 ](OH ) 2 происходит за счет образования комплексных алкоксидов , что характерно для соединений, содержащих виц -диольные группировки. При подкислении раствора выделяется целлюлоза в другой модификации, которую используют для получения искусственного шелка.

Целлюлоза растворяется в щелочах в присутствии CS 2 , образуя ксантогенаты .

[C 6 H 7 O 2 (OH) 3 ] x + x NaOH + x CS 2 ® x + x H 2 O

При подкислении раствора выделяется целлюлоза, которую используют для изготовления вискозного шелка и целлофана.

При действии уксусного ангидрида в присутствии серной кислоты образуется триацетилцеллюлоза .

[C 6 H 7 O 2 (OH) 3 ] x + 3x (CH 3 CO) 2 O ® x + 3x CH 3 COOH

Ацетилцеллюлоза растворяется в органических растворителях. Её используют для изготовления ацетатного шелка и негорючей кино- и фотопленки.

Взаимодействием целлюлозы с нитрующей смесью получают нитраты целлюлозы.

[C 6 H 7 O 2 (OH) 3 ] x x

[C 6 H 7 O 2 (OH)(ONO 2) 2 ] x x

Нитроцеллюлоза растворима в органических растворителях. Продукты с малым содержанием азота используют для изготовления лаков. Динитрат целлюлозы используют для изготовления пленок. Нитроцеллюлозу с максимальным содержанием азота называют пироксилином и применяют для изготовления бездымного пороха.

Цель занятия: изучение строения и химических свойств углеводов и их роль в организме.

Студент должен знать:

- знать строение, различные виды изомерии моносахаридов и их производных;

- химические свойства моносахаридов и их производных;

- реакции, лежащие в основе катаболизма глюкозы – гликолиз;

- строение и свойства дисахаридов и полисахпридов;

- химические свойства дисахаридов и полисахпридов.

Студент должен уметь:

- объяснить кольчато-цепную таутомерию, конформационную изомерию, оптическую изомерию, кислотно-основные свойства моносахаридов, их окислительно-восстановительные свойства;

- объяснить разницу в структуре восстанавливающих и невос-станавливающих сахаров, причины этого явления.

Углеводы (ув)

Важнейший класс органических соединений, встречающийся в природе. Наиболее известны глюкоза, крахмал, целлюлоза, гликоген, гепарин и др., играющие важное значение в жизненных процессах человека и животных.

УВ – группа природных веществ, относящихся к полиоксикарбонильным соединениям, а также вещества, близкие им по строению.

В номенклатуре УВ широко используется тривиальные названия: рибоза, фруктоза и т.д.

Моносахариды (мс)

Изомерия

    Наличие нескольких асимметрических атомов углерода обусловливает существование большого числа оптических изомеров. Это и энантиомеры (зеркальные изомеры, антиподы), и диастереомеры, и эпимеры. Эпимеры – это диастереомеры, отличающиеся друг от друга конфигурацией только одного асимметрического атома С. Все изомеры, кроме зеркальных, отличаются друг от друга свойствами и имеют свое название:

Принадлежность МС к D- или L-ряду определяется по конфигурации последнего (наиболее удаленного от
гр.) хирального атома С по аналогии со стандартом – глицериновым альдегидом:

Природные сахара – D-сахара, L-сахара поступают в организм извне.


Вновь образовавшийся гидроксил носит название полуацетального, или гликозидного и может по-разному располагаться в пространстве относительно цикла, образуя еще один асимметрический атом углерода в циклической форме. Если полуацетальный гидроксил располагается по одну сторону с гидроксилом, определяющим принадлежность к D- или L-ряду, то такой изомер называется a-изомером, а другой – b-изомером. Стереоизомеры, отличающиеся друг от друга расположением только полуацетального гидроксила в пространстве, называются аномерами .

Процесс образования циклических форм называется аномеризацией. Циклическая и открытая формы легко переходят друг в друга и находятся в динамическом равновесии. При комнатной температуре преобладает циклическая, при нагревании – открытая. Для альдогексоз более характерна пиранозная форма, для пентоз и фруктоз – фуранозная. Все это отражается в названии, например, a-D-глюкопираноза. В кристаллическом состоянии циклические формы закреплены и a-, и b-изомеры стабильны и могут быть отделены друг от друга. При растворении часть молекул переходит в открытую форму, а из нее образуются все виды циклических форм. Так как каждая форма имеет свой угол вращения луча поляризованного света, то до установления динамического равновесия угол вращения будет постоянно меняться. Изменение во времени угла вращения плоскости поляризации света свежеприготовленного раствора углеводов называется мутаротацией .

В настоящее время вместо циклических формул Колли-Толленса чаще пользуются перспективными формулами Хеуорса.

Именно циклическая форма участвуют в образовании ди- и полисахаридов.

Химические свойства

Циклическая и открытая (альдегидная) формы находятся в равновесии. Поэтому возможны,р-ции, характерные для альдегидной и циклической форм.


Все моносахариды взаимодействуют с НСN, РС1 5 , NH 2 OH, NH 2 –NH 2 , NH 2 –NHC 6 H 5 , окисляются, восстанавливаются (Н 2)

В зависимости от характера окислителя и реакции среды МС могут образовывать различные продукты окисления.

1. При действии слабых окислителей: Аg 2 O, NH 4 OH, t o или Cu(ОН) 2 , ОН – , t o идет разрушение углерод-углеродной цепи с образованием оксикислот с небольшим числом атомов С, а сами окислители при этом восстанавливаются до Аg и Сu 2 O(Cu) соответственно. Р-ция находит применение в биохимических анализах для количественного определения сахаров в биологических жидкостях.

Р-ция Толленса:

«Зеркало»

Р-ция (проба) Троммера:

    При осторожном окислении в кислой водной среде, например, бромной водой, образуются к-ты за счет окисления альдегидной группы – альдоновые кислоты:

    При действии сильных окислителей идет окисление по первому и шестому атомам С с образованием аровых к-т:

    При окислении только первичной спиртовой группы (по 6-ому атому С), если альдегидная группа защищена с образованием гликозида, получают уроновые к-ты. В организме этот процесс идет легко под действием ферментов. Уроновые к-ты способны к цикло-оксо-таутомерии. Они являются важной составной частью кислых гетерополисахаридов, например, гепарина, гиалуроновой к-ты.

    Р-ции по спиртовым гидроксилам протекают как в открытой, так и в циклических формах.

МС взаимодействуют с Ме, Ме(ОН) 2 , образуя сахараты, с Сu(OH) 2 , с СН 3 I с образованием простых эфиров, с минеральными и органическими к-тами образуются сложные эфиры, с NH 3 – аминосахара.

Наиболее важны фосфорные эфиры сахаров и аминосахара. Именно в виде фосфорных эфиров рибоза и дезоксирибоза входит в состав НК, соединения глюкозы и фруктозы участвуют в обмене веществ.

Фруктоза + 2Н 3 РО 4 1,6-Дифосфат фруктозы.

Аминосахара в организме образуются довольно легко в процессе аммонолиза. Чаще всего по второму атому С:

Аминосахара являются составной частью гетерополисахаридов.

    Р-ции по полуацетальному гидроксилу

Эти р-ции характерны для циклической формы. При действии на моносахара спирта в присутствии газообразного НС1 происходит замещение атома Н полуацетального гидроксила на R с образованием особого типа простого эфира – гликозида. Р-ры гликозидов не мутаротируют. В зависимости от размера оксидного цикла гликозиды делятся на: пиранозиды и фуранозиды, как a-, так иb-форм.

Образование гликозидов служит доказательством существования циклических форм моносахаридов.

Превращение моносахарида в гликозид – сложный процесс, протекающий через ряд последовательных р-ций. Вследствие таутомерии и обратимости р-ции образования гликозида в р-ре, в равновесии в общем случае, могут находиться таутомерные формы исходного моносахарида и соответственно 4 диастереомерных гликозидов – a и b-аномеры фуранозидов и пиранозидов.

Гликозиды могут также образовываться при взаимодействии с фенолами или NH-содержащими алифатическими и гетероциклическими аминами.

Молекулу гликозида формально можно представить состоящей из двух частей: углеводной и агликоновой. В роли гидроксилсодержащих агликонов могут выступать и сами моносахариды. Гликозиды, образованные с ОН–содержащими агликонами, называются О-гликозидами, с NH-содержащими соединениями (например, аминами), наз-ся N-гликозидами.

Гликозиды являются составными частями многих лекарственных растений. Например, сердечные гликозиды, выделенные из наперстянки. Антибиотик стрептомицин – гликозид, ванилин – гликозид. Все ди- и полисахариды являются О-гликозидами.

С биологической точки зрения особое значение имеют N-гликозиды рибозы и дезоксирибозы, как продукты соединения с азотистыми пуриновыми и пиримидиновыми основаниями. Их общее название – нуклеозиды, т.к. вместе с Н 3 РО 4 они являются нуклеиновыми к-тами – ДНК и РНК.

Все гликозиды, в том числе и нуклеозиды, легко подвергаются гидролизу в кислой среде с образованием исходных продуктов.

Гликозиды не способны к цикло-оксо-таутомерии и проявляют р-ции, характерные для спиртов.

IV. Специфические р-ции

    Действие разб. р-ров щелочей

Эпимеры: глюкоза, фруктоза и манноза легко превращаются друг в друга, образуя равновесные системы. Этот процесс наз-ся эпимеризацией.

    Действие конц. р-ров к-т

Конц. р-ры НС1 и Н 2 SО 4 вызывают дегидратацию моносахаридов: из пентоз образуется фурфурол, из фруктозы – 5-гидроксиметилфурфурол.

    Брожение

Это распад моносахаридов под действием ферментов микроорганизмов, приводящий к образованию различных продуктов. В зависимости от конечного продукта различают:

а) спиртовое брожение

б) молочнокислое

Рецензенты:

доктор медицинских наук, профессор Османов Э.М.;

кандидат химических наук, доцентКнязева Л.Г.

Р Романцова С.В., Биоорганическая химия в вопросах и ответах. Часть 2. Учеб.-метод. пособие для студентов мед. спец. ун-тов / С.В. Романцова, А.И. Панасенко, Л.В. Розенблюм; М-во обр. и науки РФ, ГБОУ ВПО «Тамб. гос. ун-т им. Г.Р. Державина». Тамбов: Изд-во ТГУ им. Г.Р. Державина, 2013. …………… с.
Настоящее учебно-методическое пособие написано в соответствии с программой курса «Общая и биоорганическая химия» для студентов специальности «Лечебное дело». В пособии приведены ответы на самые распространённые вопросы, возникающие у студентов в процессе освоения курса. Даны пояснения по особенностям строения, свойств и биологической активности биополимеров, их структурных компонентов, липидов и низкомолекулярных биорегуляторов. УДК 577.1 ББК 24.2 я73 © ГОУВПО Тамбовский государственный университет имени Г.Р. Державина, 2013


Введение

Целью курса биоорганической химии, как учебной дисциплины, является формирование системных знаний о взаимосвязи строения и химических свойств биологически важных классов органических соединений, биополимеров и их структурных компонентов в качестве основы для понимания сути жизненных процессов на современном молекулярном уровне.

В преподавании биоорганической химии большое внимание уделяется самостоятельной работе студентов. В данном пособии приводятся подробные ответы на самые распространённые вопросы, возникающие у студентов в процессе освоения второй части курса, обсуждаются вопросы химической идентификации биологически важных органических соединений. Используя данные пояснения, студенты в ходе самоподготовки учатся общему подходу и логике рассуждения, что облегчает выполнение контрольных и тестовых заданий.

углеводы: моно-, ди- и полисахариды

Вопрос 1 . Какие соединения называются углеводами?

Ответ. Углеводы – класс природных органических веществ, являющихся гетерофункциональными соединениями, содержащими одновременно карбонильную и гидроксильные функциональные группы (т.е. это многоатомные альдегидо- или кето-спирты или продукты их конденсации). Термин «углеводы» воз-ник в середине XIX века в связи с тем, что в молекулах многих углеводов соотношение атомов водорода и кислорода такое же, как и в молекулах воды, т.е. на два атома водорода приходился один атом кислорода, и молекулу углевода можно представить как состоящую из углерода (угля) и воды. Например, для глюкозы (С 6 Н 12 О 6) формула может иметь вид С 6 (Н 2 О) 6 , формулу сахарозы (С 12 Н 22 О 11) можно записать как С 12 (Н 2 О) 11 , а в общем виде – С n (Н 2 О) m . Позже стали известны природные углеводы, которые не отвечают приведённой общей формуле (С n (Н 2 О) m), тем не менее, термин «углеводы» используется и в настоящее время, наряду с термином «сахариды» или просто «сахара».

Вопрос 2 . Какие функции выполняют углеводы?

Ответ. Углеводы образуются в растениях в результате фотосинтеза из углекислого газа и воды. Животные организмы не способны синтезировать углеводы, и получают их с растительной пищей. Таким образом, углеводы входят в состав всех живых организмов и являются одними из самых распространённых органических веществ на Земле. Функции углеводов:

– структурная и опорная функции (целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих);

– защитная роль (у некоторых растений есть защитные образования: шипы, колючки и др., состоящие из клеточных стенок мёртвых клеток;

– энергетическая функция (при окислении 1 г углеводов выделяются 4,1 ккал энергии);

– пластическая функция (входят в состав сложных молекул, например, рибоза и дезоксирибоза участвуют в построении АТФ, ДНК и РНК);

– запасающая функция (углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин – у растений);

– осмотическая функция (участвуют в регуляции осмотического давления в организме, в т.ч. в крови);

– рецепторная функция (входят в состав воспринимающей части многих клеточных рецепторов).

Многие углеводы и их производные находят применение в фармации и медицине. Углеводы служат исходными веществами для промышленного производства бумаги, искусственных волокон, взрывчатых веществ, этилового спирта и т.д.

Вопрос 3 . Как классифицируются углеводы?

Ответ. Углеводы подразделяются на два класса: простые и сложные. Простые углеводы (моносахариды, монозы) не гидролизуются с образованием более простых углеводов. Примерами простых углеводов могут служить: глюкоза (С 6 Н 12 О 6), рибоза (С 5 Н 10 О 5), фруктоза (С 6 Н 12 О 6).


Простые углеводы, содержащие кетогруппу, называются кетозами, альдегидную группу – альдозами. В зависимости от числа атомов углерода монозы делят на триозы (три атома углерода), тетрозы (четыре атома), пентозы (пять атомов), гексозы (шесть атомов) и гептозы (семь атомов).

Например, глюкоза содержит в молекуле альдегидную группу и шесть атомов углерода, её называют альдогексозой; фруктоза содержит карбонильную группу (является многоатомным кетоспиртом) и шесть атомов углерода, её называют кетогексозой. Рибоза является альдопентозой. Природные монозы, как правило, содержат неразветвлённые цепи атомов углерода.

D – фруктоза
D – фруктоза
D – фруктоза
Сложные углеводы способны гидролизоваться с образованием молекул простых углеводов. Если при гидролизе сложного углевода образуется от 2 до 10 молекул простых углеводов, то такой сложный углевод называется олигосахаридом. Если при гидролизе олигосахарида образуется две молекулы простых углеводов, то его называют дисахаридом, три – трисахаридом и т.д. Самыми распространёнными дисахаридами являются сахароза (при гидролизе образуются фруктоза и глюкоза), мальтоза и целлобиоза (при их гидролизе образуются две молекулы глюкозы), лактоза (при гидролизе образуются галактоза и глюкоза).

Углеводы, гидролизующиеся с образованием большого количества (до нескольких тысяч) молекул простых углеводов, называются полисахаридами. Полисахариды являются высокомолекулярными соединениями. К ним относятся, например, крахмал и целлюлоза (клетчатка). Сложные углеводы можно рассматривать, как продукты поликонденсации моносахаридов.

Если полисахариды построены из остатков одного моносахарида, то их называют гомополисахаридами; если из остатков разных моносахаридов, то – гетерополисахаридами.

Среди гомополисахаридов наиболее биологически важными являются крахмал, гликоген, целлюлоза, среди гетерополисахаридов – альгиновые кислоты, агар (содержащиеся в водорослях); полисахариды соединительной ткани (хондроитинсульфаты, гиалуроновая кислота, гепарин).

Молекулы углеводов входят в состав смешанных биополимеров, например углевод-белковых биополимеров (гликопротеины, протеогликаны) или углевод-липидных (гликолипиды).

Вопрос 4 . Являются ли моносахариды оптически активными соединениями? Как изобразить энантиомеры моносахаридов?

Ответ. Молекулы моносахаридов (кроме диоксиацетона) содержат центры хиральности (асимметрические атомы углерода), что является причиной существования стереоизомеров. Например, в альдогексозе имеются четыре асимметрических атома углерода и ей соответствуют 16 стереоизомеров (2 4 = 16), образующих 8 пар. В альдопентозе три асимметрических атома углерода и ей соответствуют 8 стереоизомеров (2 3 = 8), образующих 4 пары.

Члены одной пары являются антиподами или энантиомерами (их молекулы относятся друг к другу как предмет к своему зеркальному изображению). Энантиомеры имеют одно и то же название, но один из них относится к D-ряду, а другой – к L-ряду. Энантиомеры можно изобразить в виде незамкнутых проекционных формул Фишера, например:

В формулах Фишера углеродная цепь записывается вертикально и нумеруется с того конца, к которому ближе альдегидная или кетогруппа, т.е. с верхнего углеродного атома. Асимметричные углеродные атомы символом «С» не обозначаются, подразумевается, что они находятся на пересечении вертикальных и горизонтальных линий.

Молекула кетопентозы содержит 2 асимметрических атома углерода (третий и четвёртый) и образует 2 пары энантиомеров:

Принадлежность изомера к D- или L-ряду определяется сравнением конфигурации наиболее удалённого от карбонильной группы асимметрического атома углерода с конфигурацией изомеров глицеринового альдегида, который принят в качестве стандарта. Глицериновый альдегид содержит в молекуле один асимметрический атом углерода и имеет два энантиомера:


Рассмотрим в качестве примера изомеры фруктозы:

D – фруктоза

В обеих формулах содержится по три асимметрических (хиральных) атома углерода. Это атомы 3, 4 и 5. Наиболее удалены от кетогруппы (С=О) хиральные атомы под номером 5. В формуле (1) конфигурация пятого атома углерода соответствует конфигурации хирального атома в молекуле D-глицеринового альдегида (ОН группа расположена справа, атом водорода – слева). Таким образом, первый изомер относится к D-ряду, это D-фруктоза. Конфигурация пятого атома углерода в формуле (2) соответствует конфигурации L-глицеринового альдегида, т.е. это L-фруктоза. Подавляющее большинство природных моносахаридов принадлежит к D-ряду.

Вопрос 5 . Встречаются ли моносахариды в природе в свободном виде?

Ответ. Самым распространённым природным моносахаридом является D-глюкоза – виноградный сахар или декстроза от лат. dextrus – правый, т.к. обычная природная D-глюкоза имеет удельное вращение + 52,5 о, т.е. вращает плоскость поляризации плоскополяризованного света на 52,5 о вправо.

В свободном виде содержится в крови, являясь основным энергетическим субстратом для мозга. Постоянный уровень глюкозы поддерживается с помощью гормона инсулина, уменьшающего концентрацию глюкозы в крови, а также глюкагона, адреналина и других гормонов, увеличивающих её концентрацию. При сахарном диабете инсулин вырабатывается поджелудочной железой в недостаточном количестве, что приводит к увеличению её концентрация в крови.

Интересно, что L-глюкоза, являясь энантиомером обычной природной D-глюкозы, также является сладкой, но не усваивается организмом, поэтому она может быть использована как заменитель сахара.

В свободном виде глюкоза содержится также в зелёных частях растений, в различных фруктах и мёде. Входит в состав крахмала, гликогена, целлюлозы, гемицеллюлоз, декстранов, сахарозы, мальтозы и многих гликозидов.

D-фруктоза – плодовый сахар или левулёза от лат. laevus – левый, т.к. водные растворы D-фруктозы имеют удельное вращение - 92,4 o .

Фруктоза содержится в зелёных частях растений, в нектаре цветов, в плодах, в мёде. Входит в состав сахарозы, а также многих полисахаридов.

D-галактоза. В свободном кристаллическом виде выделяется на плодах плюща. Встречается в качестве составной части некоторых дисахаридов (лактоза) и полисахаридов (хондроитин, агар-агар, гемицеллюлозы)

Вопрос 6 . Как написать формулу L-изомера галактозы, если известна формула D-изомера?

Ответ. Для того, чтобы написать формулуэнантиомера, необходимо изобразить в зеркальном отражении заместители у всех асимметрических атомов углерода. Запишем формулу D-галактозы, выбрав из схемы, приведённой ниже и поменяем расположение заместителей (–Н и –ОН) у 2, 3, 4 и 5 атомов углерода:


Название энантиомера: L-галактоза.

Вопрос 7 . В чём состоит различие между диастеромерами, эпимерами и энантиомерами?

Ответ. Стереоизомеры углеводов, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода, называются диастереомерами, например: D-аллоза и D-манноза; D-фруктоза и L-тагатоза и т.д.

Эпимеры и энантиомеры – частные случаи диастереомеров.

Диастереомеры, относящиеся друг к другу как предмет к своему зеркальному изображению, называются энантиомерами. Энантиомеры имеют одинаковые физические и химические свойства, отличаются эти изомеры только направлением вращения плоскости поляризации плоскополяризованного света. Различается также биологическая активность энантиомеров.

Если диастереомеры различаются конфигурацией только одного асимметрического атома углерода, то их называют эпимерами. Если различается конфигурация второго атома углерода, то такие диастереомеры называют просто эпимерами; если других атомов углерода, то к названию добавляется номер этого атома.

Например, D-рибоза и D-арабиноза отличаются конфигурацией только второго атома углерода и являются эпимерами.

D-аллоза и D-глюкоза отличаются конфигурацией только третьего атома углерода и являются 3-эпимерами, а D-аллоза и D-гулоза – 4-эпимерами.

Эпимеры имеют различные физические и оптические свойства, а также биологическую активность.

Вопрос 8 . Как определить, являются ли диастереомерами D-аллоза и L-идоза?

Ответ. Дляэтого надо написать формулы этих альдоз. Формула D-аллозы приведена на схеме (см. вопрос 6). L-идоза являются энантомером D-идозы, т.е. их молекулы относятся друг к другу как предмет и его зеркальное изображение и, зная формулу D-идозы легко записать формулу L-идозы (см. вопрос 6):

Диастереомеры, по определению, должны отличаться конфигурацией одного или нескольких асимметрических атомов углерода. Из рассмотрения формул D-аллозы и L-идозы следует, что конфигурации второго и четвёртого атомов углерода у них одинаковы (и в молекуле D-аллозы и в молекуле L-идозы ОН группы у этих атомов расположены справа, а атомы водорода – слева).


Конфигурации третьего и пятого атомов углерода отличаются (в молекуле D-аллозы ОН группы находятся справа от углеродной цепи, а в молекуле L-идозы – слева). Таким образом, D-аллоза и L-идоза отличаются конфигурацией двух асимметрических атомов углерода: третьего и пятого, и, следовательно, являются диастереомерами.

Вопрос 9 . Как определить, являются ли эпимерами D-глюкоза и D -манноза?

Ответ. Дляэтого надо написать формулы этих альдоз. Формула приведены на схеме (см. вопрос 6).

Эпимеры являются частным случаем диастереомеров и, по определению, должны отличаться конфигурацией только одного асимметрического атома углерода. Из рассмотрения формул D-глюкозы и D-маннозы следует, что у третьего атома углерода в обеих молекулах атом водорода расположен справа, а гидроксильная группа – слева; у четвёртого и пятого атомов углерода в обеих молекулах атом водорода расположен слева, а гидроксильная группа – справа; т.е. конфигурации третьего, четвёртого и пятого асимметрических атомов углерода у D-глюкозы и D-маннозы одинаковы.

Конфигурация второго атома углерода отличается (в молекуле D-глюкозы ОН группа находится справа от углеродной цепи, а в молекуле D-маннозы – слева). Таким образом, D-глюкоза и D-манноза отличаются конфигурацией только одного (второго) асимметрического атома углерода и, следовательно, являются эпимерами.

Вопрос 10 . Как образуются циклические формы моносахаридов?

Ответ. Циклические формы моносахаридов образуются в результате внутримолекулярного взаимодействия между карбоксильной и гидроксильной группами. Эти формы термодинамически более устойчивы, чем открытые формы молекул углеводов. Обычно возникают пятичленные (фуранозные) и шестичленные (пиранозные) циклы. В пространстве оказываются сближенными альдегидные (или кетонные) группы и гидроксильная группа при четвёртом или пятом (для альдоз) и пятом и шестом (для кетоз) атоме углерода. За счёт их взаимодействия и происходит замыкание циклов в молекулах моносахаридов.

Шестичленный пиранозный цикл образуется при взаимодействии альдегидной группы с пятым атомом альдопентоз или альдогексоз; а также при взаимодействии кетогруппы с шестым атомом кетогексоз.


Пятичленный фуранозный цикл образуется при взаимодействии альдегидной группы с четвёртым атомом альдотетроз, альдопентоз и альдогексоз; а также при взаимодействии кетогруппы с пятым атомом кетопентоз и кетогексоз.



В результате образования цикла в молекуле альдогексозы у первого атома углерода вместо альдегидной группы появляется гидроксильная группа (у кетогексоз у второго атома углерода). Эта гидроксильная группа получила название гликозидной (полуацетальной) гидроксильной группы (гликозидный гидроксил). В названиях циклических форм к обозначению углевода добавляется окончание «пираноза» для шестичленного цикла или «фураноза» для пятичленного цикла.

В циклической молекуле моносахарида увеличивается число асимметрических атомов углерода, т.к. асимметрическим становится атом углерода, который ранее входил в состав альдегидной или кетонной группы. В случае галактозы это первый, а в случае фруктозы – второй атом углерода. Этот атом получил название аномерного углерода. Появление дополнительного асимметрического атома приводит к увеличению числа оптических изомеров, соответствующих циклической форме, в два раза по сравнению с открытой формой. Так, для альдогексозы это уже не 16, а 32 изомера. Каждому изомеру открытой формы отвечают два изомера циклической формы (аномеры).

У α-аномера конфигурация аномерного центра одинакова с конфигурацией асимметрического атома углерода, определяющего принадлежность к D- или L-ряду, а у β-аномера она противоположна. В проекционных формулах Фишера у моносахаридов D-ряда в α-аномере гликозидная гидроксильная группа находится справа, а в β-аномере – слева от углеродной цепи; для L-изомеров наоборот, в α-аномере гликозидная гидроксильная группа находится слева, а в β-аномере – справа от углеродной цепи. Аномеры являются диастереомерами и отличаются по своим свойствам (например, по температурам плавления). Аномеры можно рассматривать как частный случай эпимеров.

Вопрос 11 . Как изображаются циклические формы моносахаридов в виде перспективных формул Хеуорса?

Ответ. В системе Хеуорса циклы изображают в виде плоских пяти- или шестиугльников, расположенных перпендикулярно плоскости рисунка, поэтому линии, соответствующие передней части кольца выделяют более жирным шрифтом. Атом кислорода располагается в пиранозном цикле в дальнем правом углу, в фуранозном – также в дальнем правом углу или в середине задней части кольца. Гидроксильные группы и атомы водорода располагают перпендикулярно плоскости цикла. Символы атомов углерода в циклах обычно не пишутся.


Чтобы написать формулу Хеуорса вначале изображают формулу Фишера и поворачивают её на 90 о вправо (по часовой стрелке:

Поворачивают на 90 о атом углерода, связанный с гидроксильной группой, вступающей в реакцию циклизации. При построении маннофуранозы это будет четвёртый атом углерода, при построении маннопиранозы – пятый. В результате поворота группа –ОН должна расположиться в одну линию с основной углеродной цепью. Поэтому для D-изомера группа –СН 2 ОН окажется вверху, а для L-изомера – внизу:


В названии циклической формы указывается: тип аномера (a или b), затем принадлежность к стереохимическому ряду: D- или L-; затем название моносахарида, производным которого является данная циклическая форма, без окончания «–за», то есть оставляем глюко-, манно-, фрукто- и т.д., в заключение указывается тип циклической формы (пираноза или фураноза).

У альдогексоз D-ряда в пиранозной форме (и у альдопентоз и кетогексоз D-ряда в фуранозной форме) группа СН 2 ОН всегда располагается над плоскостью цикла, что служит формальным признаком D-ряда. Для L-ряда эта группа располагается под плоскостью цикла. Гликозидная группа –ОН у a-аномеров альдоз D-ряда оказывается под плоскостью, а у b-аномеров – над плоскостью цикла. Для соединений L-ряда гликозидный гидроксил у a-аномеров L-ряда оказывается над плоскостью, а у b-аномеров – под плоскостью цикла.

Следуя приведённым выше правилам, можно написать формулы Хеуорса для фуранозных и пиранозных форм кетоз, например для фруктозы:




Вопрос 12 . В каких формах (открытых или циклических) преимущественно находятся моносахариды в твёрдом состоянии и в растворе?

Ответ. В твёрдом состоянии моносахариды находятся в циклической форме (преимущественно пиранозной). В растворах устанавливается равновесие между открытой формой и двумя парами циклических аномеров (цикло-оксо-таутомерное равновесие или цикло-цепная таутомерия). Различные формы молекул, находящихся в состоянии такого равновесия называются таутомерами. В смесях таутомеров преобладают пиранозные формы. Открытые формы и фуранозные циклы содержатся в малых количествах. Преобладание a- или b-аномера зависит от природы монозы, растворителя, концентрации и других внешних условий.

Таутомерные формы углеводов могут переходить друг в друга, что приводит к пополнению количества той или иной формы по мере её расходования в каком-либо процессе. Равновесие между всеми формами является, таким образом, динамическим. Так, если какой-либо аномер глюкозы растворить в воде, он постепенно превращается в другой аномер, пока не образуется равновесная смесь двух аномеров, в которой также содержится очень небольшое количество открытой формы. Этот переход сопровождается изменением оптического вращения раствора, т.к. для каждого таутомера характерен свой угол вращения плоскости поляризации плоскополяризованного света. Такое явление называют мутаротацией моносахаридов.


Вопрос 13 . Напишите a-фуранозную и b-пиранозную формы L-арабинозы. Изобразите их аномеры в виде проекций Фишера.

Ответ. За исходное соединение необходимо взять D-арабинозу. Записываем её формулу и строим формулу её энантиомера (см. вопрос 6).

L-арабиноза – альдопентоза. Её фуранозная форма образуется за счет взаимодействия альдегидной группы с гидроксилом четвертого углеродного атома; а пиранозная форма – за счет взаимодействия альдегидной группы с гидроксилом пятого атома углерода. При циклизации водород гидроксильной группы (С 5 или С 4) присоединяется к кислороду альдегидной группы за счет разрыва p-связи С–О, образуя полуацетальный, или гликозидный, гидроксил (заключен в рамку). Кислород гидроксильной группы у атома С 4 или С 5 после отщепления от него водорода соединяется с углеродом альдегидной группы у атома С 1 . Возникает кислородный мостик, связывающий атомы С 1 –С 4 и замыкающий пятичленный цикл, или С 1 –С 5 и замыкающий шестичленный цикл.

О О НО Н Н ОН

С – Н 1 С – Н C С

НО Н Н 2 ОН H ОН H ОН

Н ОН НО 3 Н HO Н HO Н

Н ОН НО 4 Н О Н О Н

СН 2 ОН 5 СН 2 ОН СН 2 ОН СН 2 ОН

D-арабиноза L-арабиноза a-L-арабинофураноза b-L-арабинофураноза

О О НО Н Н ОН СН 2 ОН 5 СН 2 ОН О СН 2 О СН 2

D-арабиноза L-арабиноза a-L-арабинопираноза b-L-арабинопираноза

В полуацетальной форме первый атом углерода превратился в асимметрический. В результате этого при замыкании цикла из одной открытой альдегидной формы (оксоформы) получаются две циклические полуацетальные формы, отличающиеся одна от другой положением полуацетального гидроксила.

Циклическая форма, у которой полуацетальный гидроксил расположен по одну сторону (в циc-положении) с гидроксилом, определяющим конфигурацию (принадлежность к D- или L-ряду) монозы, называется a-формой. Циклическая форма, у которой полуацетальный гидроксил находится в транс-положении с гидроксилом, определяющим конфигурацию, называется b-формой. a и b-Формы представляют собой диастереомеры, называющиеся аномерами.

Вопрос 14 . Какие соединения получаются при восстановлении D-глюкозы и D-фруктозы?

Ответ. При восстановлении моносахаридов образуются многоатомные спирты (полиолы), называемые альдитами. Восстановление обычно проводят водородом в присутствии металлических катализаторов (палладий, никель) или боргидридом натрия. Водород присоединяется по месту разрыва двойной связи углерод – кислород карбонильной группы. При восстановлении альдоз получается лишь один продукт (полиол), например при восстановлении D-глюкозы образуется шестиатомный спирт D-глюцит (L-сорбит):

D-глюцит, как и D-глюкоза является оптически активным соединением, т.к. в его молекуле присутствует 4 асимметрических атома углерода (2, 3, 4, 5) и отсутствуют элементы симметрии.

Восстановление глюкозы в сорбит является первой стадией химического синтеза аскорбиновой кислоты. Сорбит окисляют микробиологически, используя микроорганизм Acetobacter suboxydans; образующуюся L-сорбозу в несколько стадий превращают в аскорбиновую кислоту.

При восстановлении кетоз получается смесь двух полиолов, т.к. атом углерода, входивший в состав кетогруппы, после восстановления становится асимметрическим и для него возможно двоякое расположение ОН группы и атома водорода в пространстве (как слева, так и справа от углеродной цепи). Например, для D-фруктозы имеем:


D-глюцит и D-маннит обладают оптической активностью.

Многоатомные спирты, получающиеся при восстановлении моносахаридов, - кристаллические вещества, хорошо растворимые в воде; обладают сладким вкусом и могут использоваться, как заменители сахара при сахарном диабете (ксилит, сорбит).

Вопрос 15 . При восстановлении каких альдогексоз образуются оптически неактивные шестиатомные спирты?

Ответ. При восстановлении D-галактозы и D-аллозы получаются шестиатомные спирты дульцит и аллит соответственно. Молекулы этих спиртов имеют плоскость симметрии, проходящую между третьим и четвёртым атомати углерода, следовательно, эти полиолы оптической активностью не обладают.

Вопрос 16 . Какие соединения могут получаться при окислении L-галактозы? Будут ли эти соединения оптически активны?

Ответ. Реакции окисления используются при биохимических анализах (например, анализ крови и мочи на сахар). Состав и строение продуктов окисления моносахаридов зависит от природы монозы и условий окисления (прежде всего от силы окислителя). Альдозы окисляются легче кетоз.

Под действием мягких окислителей (аммиачный раствор оксида серебра, гидроксид меди, бромная вода) альдозы превращаются в альдоновые кислоты (альдегидная группа окисляется до кислотной карбонильной группы).

А) реакция «серебряного зеркала» (реакция Толленса):

Внешний признак протекания реакции – образование на стенках пробирки слоя металлического серебра.

Б) реакция с гидроксидом меди (II):

Внешний признак протекания реакции – превращение голубого осадка гидроксида меди (II) в красный осадок оксида меди (I).

В) окисление бромной водой (внешний признак протекания реакции – обесцвечивание раствора брома):


С помощью сильного окислителя – разбавленной азотной кислоты – концевые группы альдоз (альдегидная и первичная спиртовая) одновременно окисляются в карбоксильные группы, образуя альдаровые (сахарные) кислоты, например:

Эта реакция может быть использована для обнаружения галактозы, т.к. слизевая кислота трудно растворяется в воде. Следует обратить внимание на тот факт, что, хотя в молекуле слизевой кислоты имеется четыре асимметрических атома углерода (2, 3, 4, 5), она не проявляет оптической активности, т.к. обладает плоскостью симметрии.

В организме при участии ферментов может окислиться первичная спиртовая группа, в то время, как альдегидная группа в результате остаётся не окисленной. Продукты таких реакций называют уроновыми кислотами:

В организме уроновые кислоты выполняют очень важную функцию: они образуют с лекарственными веществами и продуктами их превращений (метаболитами), токсичными веществами водорастворимые гликозиды и выводят их из организма с мочой, отсюда происходит название уроновых кислот (лат. urina – моча). D-глюкуроновая и L-идуроновая кислоты и их производные являются структурными элементами различных полисахаридов (пектиновые вещества, гепарин, гиалуроновая кислота, хондроитин, гепарин и т.д.). В ходе метаболизма уроновых кислот синтезируется аскорбиновая кислота (у человека не синтезируется).

Вопрос 17 . Какие соединения могут получаться при окислении D-фруктозы? Будут ли эти соединения оптически активны?

Ответ. Окисление кетоз происходит под действием сильных окислителей и сопровождается деструк­цией углеродного скелета. Разрыв связи может происходить двумя способами: между первым и вторым, а также вторым и третьим атомами углерода. При этом все концевые атомы углерода окисляются с образованием карбоксильных групп.

Так, при окислении D-фруктозы образуется четыре продукта реакции. При разрыве связи между первым и вторым атомами углерода образуются муравьиная и D-арабинаровая кислоты. При разрыве связи между вторым и третьим атомами углерода образуются щавелевая и мезовинная кислоты.


Похожие публикации