Типовые математические модели. Курсовая работа: Имитационное моделирование системы массового обслуживания

Курсовая работа

«Имитационное моделирование системы массового обслуживания»

по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

– Абсолютная пропускная способность системы (А

Q

– вероятность отказа обслуживания заявки ();

k );

– среднее число заявок в очереди ();

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМОи показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой – графом состояний . Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние – стрелками. Пример графа состояний приведен на рис. 1.


Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q ), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k );

– среднее число заявок в СМО ();

– среднее время пребывания заявки в системе ();

– среднее число заявок в очереди () – длина очереди;

– среднее число заявок в системе ();

– среднее время пребывания заявки в очереди ();

– среднее время пребывания заявки в системе ()

– степень загрузки канала (), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

Вероятность

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

Среднее число заявок под

обслуживанием

Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где – интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а – соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:


, , т.е. , где

Исправленная дисперсия, ,

N – число прогонов программы, – надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Данная система имеет 7 состояний, обозначим их:

S 0 – система свободная, нет заявок;

S 1 – 1 заявка на обслуживании, очередь пуста;

S 2 – 2 заявки на обслуживании, очередь пуста;

S 3 – 2 заявки на обслуживании, 1 заявка в очереди;

S 4 – 2 заявки на обслуживании, 2 заявки в очереди;

S 5 – 2 заявки на обслуживании, 3 заявки в очереди;

S 6 – 2 заявки на обслуживании, 4 заявки в очереди;

Вероятности прихода системы в состояния S 0 , S 1 , S 2 , …, S 6 соответственно равны Р 0 , Р 1 , Р 2 , …, Р 6 .

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3. Граф состояний двухканальной СМО


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 11 (см. Приложение 1).

Метод Эйлера


где- в нашем случае, это правые части уравнений Колмогорова, n=6.

Выберем шаг по времени . Предположим , где Т – это время, за которое система выходит на стационарный режим. Отсюда получаем число шагов . Последовательно N раз вычисляя по формуле (1) получим зависимости вероятностей состояний системы от времени, приведенной на рис. 4.

Значения вероятностей СМО при равны:


Рис. 4. Зависимости вероятностей состояний системы от времени

P 0
P 5
P 4
P 3
P 2
P 1
2.2 Финальные вероятности системы

При достаточно большом времени протекания процессов в системе () могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов можно перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Т.к. в стационарном состоянии производные по времени равны 0, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания правых частей 0. Запишем уравнения для финальных вероятностей для нашей СМО.


Решим данную систему линейных уравнений с помощью программного пакета Maple 11 (см. Приложение 1).

Получим финальные вероятности системы:

Сравнение вероятностей, полученных из системы уравнений Колмогорова при , с финальными вероятностями показывает, что ошибки равны:

Т.е. достаточно малы. Это подтверждает правильность полученных результатов.

2.3 Расчет показатели эффективности системы по финальным вероятностям

Найдем показатели эффективности системы массового обслуживания.

Сначала вычислим приведенную интенсивность потока заявок:

1) Вероятность отказав обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди), это соответствует состоянию системы S 6 . Т.к. вероятность прихода системы в состояние S 6 равна Р 6 , то

4) Средняя длина очереди, т.е. среднее число заявок в очереди, равна сумме произведений числа заявок в очереди на вероятность соответствующего состояния.

5) Среднее время пребывания заявки в очередиопределяется формулой Литтла:

3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

Рассмотрим двухканальную систему массового обслуживания (n = 2) с максимальной длиной очереди равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Для имитации СМО воспользуемся одним из методов статистического моделирования – имитационным моделированием. Будем использовать пошаговый подход. Суть этого подхода в том, что состояния системы рассматриваются в последующие моменты времени, шаг между которыми является достаточно малым, чтобы за его время произошло не более одного события.

Выберем шаг по времени (). Он должен быть много меньше среднего времени поступления заявки () и среднего времени ее обслуживания (), т.е.

Где (3.1.1)

Исходя из условия (3.1.1) определим шаг по времени .

Время поступления заявки в СМО и время ее обслуживания являются случайными величинами. Поэтому, при имитационном моделировании СМО их вычисление производится с помощью случайных чисел.

Рассмотрим поступление заявки в СМО. Вероятность того, что на интервале в СМО поступит заявка, равна: . Сгенерируем случайное число , и, если , то будем считать, что заявка на данном шаге в систему поступила, если , то не поступила.

В программе это осуществляет isRequested () . Интервал времени примем постоянным и равным 0,0001, тогда отношение будет равно 10000. Если заявка поступила, то она принимает значение «истина», в противном случае значение «ложь».

bool isRequested()

double r = R. NextDouble();

if (r < (timeStep * lambda))

Рассмотрим теперь обслуживание заявки в СМО. Время обслуживания заявки в системе определяется выражением , где – случайное число. В программе время обслуживания определяется с помощью функции GetServiceTime () .

double GetServiceTime()

double r = R. NextDouble();

return (-1/mu*Math. Log (1-r, Math.E));

Алгоритм метода имитационного моделирования можно сформулировать следующим образом. Время работы СМО (Т ) разбивается на шаги по времени dt , на каждом из них выполняется ряд действий. Вначале определяются состояния системы (занятость каналов, длина очереди), затем, с помощью функции isRequested () , определяется, поступила ли на данном шаге заявка или нет.

Если поступила, и, при этом имеются свободные каналы, то с помощью функции GetServiceTime () генерируем время обработки заявки и ставим ее на обслуживание. Если все каналы заняты, а длина очереди меньше 4, то помещаем заявку в очередь, если же длина очереди равна 4, то заявке будет отказано в обслуживании.

В случае, когда на данном шаге заявка не поступала, а канал обслуживания освободился, проверяем, есть ли очередь. Если есть, то из очереди заявку ставим на обслуживание в свободный канал. После проделанных операций время обслуживания для занятых каналов уменьшаем на величину шага dt .

По истечении времени Т , т.е., после моделирования работы СМО, вычисляются показатели эффективности работы системы и результаты выводятся на экран.

3.2 Блок-схема программы

Блок-схема программы, реализующей описанный алгоритм, приведена на рис. 5.

Рис. 5. Блок-схема программы

Распишем некоторые блоки более подробно.

Блок 1. Задание начальных значений параметров.

Random R; // Генератор случайных чисел

public uint maxQueueLength; // Максимальная длина очереди

public uint channelCount; // Число каналов в системе

public double lambda; // Интенсивность потока поступления заявок

public double mu; // Интенсивность потока обслуживания заявок

public double timeStep; // Шагповремени

public double timeOfFinishProcessingReq; // Время окончания обслуживания заявки во всех каналах

public double timeInQueue; // Время пребывания СМО в состояниях с очередью

public double processingTime; // Времяработысистемы

public double totalProcessingTime; // Суммарноевремяобслуживаниязаявок

public uint requestEntryCount; // Числопоступившихзаявок

public uint declinedRequestCount; // Числоотказанныхзаявок

public uint acceptedRequestCount; // Числообслуженныхзаявок

uint queueLength; // Длина очереди //

Тип, описывающий состояния СМО

enum SysCondition {S0, S1, S2, S3, S4, S5, S6};

SysCondition currentSystemCondition; // Текущее состояние системы

Задание состояний системы. Выделим у данной 2-х канальной системы 7 различных состояний: S 0 , S 1 . S 6 . СМО находится в состоянии S 0 , когда система свободна; S 1 – хотя бы один канал свободен; в состоянии S 2 , когда все каналы заняты, и есть место в очереди; в состоянии S 6 – все каналы заняты, и очередь достигла максимальной длины (queueLength = 4).

Определяем текущее состояние системы с помощью функции GetCondition()

SysCondition GetCondition()

SysCondition p_currentCondit = SysCondition.S0;

int busyChannelCount = 0;

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq[i] > 0)

busyChannelCount++;

p_currentCondit += k * (i + 1);

if (busyChannelCount > 1)

{p_currentCondit ++;}

return p_currentCondit + (int) QueueLength;

Изменение времени пребывания СМО в состояниях с длиной очереди 1, 2,3,4. Это реализуется следующим программным кодом:

if (queueLength > 0)

timeInQueue += timeStep;

if (queueLength > 1)

{timeInQueue += timeStep;}

Присутствует такая операция, как помещение заявки на обслуживание в свободный канал. Просматриваются, начиная с первого, все каналы, когда выполняется условие timeOfFinishProcessingReq [ i ] <= 0 (канал свободен), в него подается заявка, т.е. генерируется время окончания обслуживания заявки.

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] <= 0)

timeOfFinishProcessingReq [i] = GetServiceTime();

totalProcessingTime+= timeOfFinishProcessingReq [i];

Обслуживаниезаявоквканалахмоделируетсякодом:

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] > 0)

timeOfFinishProcessingReq [i] -= timeStep;

Алгоритм метода имитационного моделирования реализован на языке программирования C#.

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

Наиболее важными являются такие показатели, как:

1) Вероятность отказа в обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди). Для нахождения вероятности отказа разделим время пребывания СМО в состоянии с очередью 4 на общее время работы системы.

2) Относительная пропускная способность – это средняя доля поступивших заявок, обслуживаемых системой.

3) Абсолютная пропускная способность– это среднее число заявок, обслуживаемых в единицу времени.


4) Длина очереди, т.е. среднее число заявок в очереди. Длина очереди равна сумме произведений числа человек в очереди на вероятность соответствующего состояния. Вероятности состояний найдем как отношение времени нахождения СМО в этом состоянии к общему времени работы системы.

5) Среднее время пребывания заявки в очереди определяется формулой Литтла

6) Среднее число занятых каналовопределяется следующим образом:

7) Процент заявок, которым было отказано в обслуживании, находится по формуле

8) Процент обслуженных заявок находится по формуле


3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Т.к. показатели эффективности получаются в результате моделирования СМО в течение конечного времени, они содержат случайную компоненту. Поэтому, для получения более надежных результатов нужно провести их статистическую обработку. С этой целью оценим доверительный интервал для них по результатам 20 прогонов программы.

Величина попадает в доверительный интервал, если выполняется неравенство

, где

математическое ожидание (среднее значение), находится по формуле

Исправленная дисперсия,

,

N =20 – число прогонов,

– надежность. При и N =20 .

Результат работы программы представлен на рис. 6.


Рис. 6. Вид программы

Для удобства сравнения результатов, полученных различными методами моделирования, представим их в виде таблицы.

Таблица 2.

Показатели

эффективности СМО

Результаты

аналитического

моделирования

Результаты

имитационного моделирования (послед. шаг)

Результаты имитационного моделирования

Нижняя граница

доверительного

интервала

Верхняя граница

доверительного

интервала

Вероятность отказа 0,174698253017626

0,158495148639101

0,246483801571923
Относительная пропускная способность 0,825301746982374 0,753516198428077 0,841504851360899
Абсолютная пропускная способность 3,96144838551539 3,61687775245477 4,03922328653232
Средняя длина очереди 1,68655313447018 1,62655862750852 2,10148609204869
Среднее время пребывания заявки в очереди 0,4242558575 0,351365236347954 0,338866380730942 0,437809602510145
Среднее число занятых каналов 1,9807241927577 1,80843887622738 2,01961164326616

Из табл. 2 видно, что результаты, полученные при аналитическом моделировании СМО, попадают в доверительный интервал, полученный по результатам имитационного моделирования. Т.е., результаты, полученные разными методами, согласуются.

Заключение

В данной работе рассмотрены основные методы моделирования СМО и расчета показателей их эффективности.

Проведено моделирование двухканальной СМО с максимальной длиной очереди равной 4 с помощью уравнений Колмогорова, а также, найдены финальные вероятности состояний системы. Рассчитаны показатели ее эффективности.

Проведено имитационное моделирование работы такой СМО. На языке программирования C# составлена программа, имитирующая ее работу. Проведена серия расчетов, по результатам которых найдены значения показателей эффективности системы и выполнена их статистическая обработка.

Полученные при имитационном моделировании результаты согласуются с результатами аналитического моделирования.

Литература

1. Вентцель Е.С. Исследование операций. – М.: Дрофа, 2004. – 208 с.

2. Волков И.К., Загоруйко Е.А. Исследование операций. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2002. – 435 с.

3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2000. – 447 с.

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1979. – 400 с.

5. Ивницкий В.Л. Теория сетей массового обслуживания. – М.: Физматлит, 2004. – 772 с.

6. Исследование операций в экономике/ под ред. Н.Ш. Кремера. – М.: Юнити, 2004. – 407 с.

7. Таха Х.А. Введение в исследование операций. – М.: ИД «Вильямс», 2005. – 902 с.

8. Харин Ю.С., Малюгин В.И., Кирлица В.П. и др. Основы имитационного и статистического моделирования. – Минск: Дизайн ПРО, 1997. – 288 с.

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

Одноканальная смо с отказами

Дано : система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях:S 0 – канал свободен;S 1 – канал занят. Переход изS 0 вS 1 связан с появлением заявки и немедленным началом ее обслуживания. Переход изS 1 вS 0 осуществляется, как только очередное обслуживание завершится (рис.4).

Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):

где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками -);

–интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):

Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):

Очевидны следующие соотношения: и.

Пример . Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа. Среднее время изготовления одной детали равно. Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

N – канальная смо с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано : в системе имеетсяn – каналов, на которые поступает поток заявок с интенсивностью. Поток обслуживаний имеет интенсивность. Заявка, заставшая систему занятой, сразу же покидает ее.

Найти : абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времениt , получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение . Состояние системыS (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

    S 0 – в СМО нет ни одной заявки;

    S 1 – в СМО находится одна заявка (один канал занят, остальные свободны);

    S 2 – в СМО находится две заявки (два канала заняты, остальные свободны);

    S n – в СМО находитсяn – заявок (всеn – каналов заняты).

Граф состояний СМО представлен на рис. 5

Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S 0 в состояниеS 1 систему переводит поток заявок с интенсивностью(как только приходит заявка, система переходит изS 0 вS 1). Если система находилась в состоянииS 1 и пришла еще одна заявка, то она переходит в состояниеS 2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S 1 (работает один канал). Он производитобслуживаний в единицу времени. Поэтому дуга перехода из состоянияS 1 в состояниеS 0 нагружена интенсивностью. Пусть теперь система находится в состоянииS 2 (работают два канала). Чтобы ей перейти вS 1 , нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равнаи т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

Абсолютная пропускная способность :

где n – количество каналов СМО;

–вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S 0);

Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):

Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

S 1 , когда один канал занят:

Вероятность того, что СМО находится в состоянии S 2 , т.е. когда два канала заняты:

Вероятность того, что СМО находится в состоянии S n , т.е. когда все каналы заняты.

Теперь для n – канальной СМО с отказами

Относительная пропускная способность:

Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

Вероятность отказа :

Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):

Аналитическое исследование систем массового обслуживания (СМО) является подходом, альтернативным имитационному моделированию, и состоит в получении формул для расчета выходных параметров СМО с последующей подстановкой значений аргументов в эти формулы в каждом отдельном эксперименте.

В моделях СМО рассматривают следующие объекты:

1) заявки на обслуживание (транзакты);

2) обслуживающие аппараты (ОА), или приборы.

Практическая задача теории массового обслуживания связана с исследованием операций этими объектами и состоит из отдельных элементов, на которые влияют случайные факторы.

В качестве примера задач, рассматриваемых в теории массового обслуживания, можно привести: согласование пропускной способности источника сообщения с каналом передачи данных, анализ оптимального потока городского транспорта, расчет емкости зала ожидания для пассажиров в аэропорту и пр.

Заявка может находиться либо в состоянии обслуживания, либо в состоянии ожидания обслуживания.

Обслуживающий прибор может быть либо занят обслуживанием, либо свободен.

Состояние СМО характеризуется совокупностью состояний обслуживающих приборов и заявок. Смена состояний в СМО называется – событие.

Модели СМО используются для исследования процессов происходящие в системе, при подаче на входы потоков заявок. Эти процессы представляют собой последовательность событий.

Важнейшие выходные параметры СМО

Производительность

Пропускная способность

Вероятность отказа в обслуживании

Среднее время обслуживания;

Коэффициент загрузки оборудования (ОА).

Заявками могут быть заказы на производство изделий, задачи, решаемые в вычислительной системе, клиенты в банках, грузы, поступающие на транспортировку и др. Очевидно, что параметры заявок, поступающих в систему, являются случайными величинами и при исследовании или проектировании могут быть известны лишь их законы распределения.

В связи с этим анализ функционирования на системном уровне, как правило, носит статистический характер. В качестве математического аппарата моделирования удобно принять теорию массового обслуживания, а в качестве моделей систем на этом уровне использовать системы массового обслуживания.



Простейшие модели СМО

В простейшем случае СМО представляет собой некоторое устройство, называемое обслуживающим аппаратом (ОА), с очередями заявок на входах.

М о д е л ьо б с л у ж и в а н и я с о т к а з а м и (рис.5.1)


Рис. 5.1. Модель СМО с отказами:

0 – источник заявок;

1 – обслуживающий прибор;

а – входной поток заявок на обслуживание;

в – выходной поток обслуженных заявок;

с – выходной поток необслуженных заявок.

В этой модели отсутствует накопитель заявок на входе ОА. Если заявка приходит от источника 0 в момент времени, когда ОА занят обслуживанием предыдущей заявки, то вновь пришедшая заявка выходит из системы (так как ей отказано в обслуживании) и теряется (поток с ).

М о д е л ь о б с л у ж и в а н и я с о ж и д а н и е м (рис. 5.2)


Рис. 5.2. Модель СМО с ожиданием

(N– 1) – количество заявок, которое может поместиться в накопителе

В этой модели имеется накопитель заявок на входе ОА. Если заявка приходит от источника 0 в момент времени, когда ОА занят обслуживанием предыдущей заявки, то вновь пришедшая заявка попадает в накопитель, где неограниченно долго ожидает, пока освободится ОА.

М о д е л ь о б с л у ж и в а н и я с о г р а н и ч е н н ы м в р е м е н е м

о ж и д а н и я (рис. 5.3)


Рис. 5.4. Многоканальная модель СМО с отказами:

n – количество одинаковых обслуживающих аппаратов (приборов)

В этой модели имеется не один ОА, а несколько. Заявки, если это специально не оговорено, могут поступать к любому свободному от обслуживания ОА. Накопителя нет, поэтому данная модель включает свойства модели, показанной на рис. 5.1: отказ в обслуживании заявки означает ее безвозвратную потерю (это происходит только в том случае, если в момент прихода этой заявки все ОА заняты).

в р е м е н е м о ж и д а н и я (рис. 5.5)


Рис. 5.6. Многоканальная модельСМО с ожиданием и восстановлением ОА:

e – обслуживающие аппараты, вышедшие из строя;

f – восстановленные обслуживающие аппараты

Данная модель обладает свойствами моделей, представленных на рис. 5.2 и 5.4, а кроме того свойствами, позволяющими учитывать возможные случайные отказы ОА, которые в этом случае поступают в ремонтный блок 2, где пребывают в течение случайных промежутков времени, затрачиваемых на их восстановление, а затем вновь возвращаются в обслуживающий блок 1.

М н о г о к а н а л ь н а я м о д е л ь СМО с о г р а н и ч е н н ы м

в р е м е н е м о ж и д а н и я и в о с с т а н о в л е н и е м ОА (рис. 5.7)


Рис. 5.7. Многоканальная модель СМО с ограниченным временем ожидания и восстановлением ОА

Данная модель является довольно сложной, поскольку одновременно учитывает свойства двух не самых простых моделей (рис. 5.5 и 5.6).

ВВЕДЕНИЕ

ГЛАВА I. ПОСТАНОВКА ЗАДАЧ МАССОВОГО ОБСЛУЖИВАНИЯ

1.1 Общие понятие теории массового обслуживания

1.2 Моделирование систем массового обслуживания

1.3 Графы состояний СМО

1.4 Случайные процессы

Глава II. УРАВНЕНИЯ, ОПИСЫВАЮЩИЕ СИСТЕМЫ МАССОВОГО ОБСЛУЖИВАНИЯ

2.1 Уравнения Колмогорова

2.2 Процессы «рождения – гибели»

2.3 Экономико-математическая постановка задач массового обслуживания

Глава III. МОДЕЛИ СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ

3.1 Одноканальная СМО с отказами в обслуживании

3.2 Многоканальная СМО с отказами в обслуживании

3.3 Модель многофазной системы обслуживания туристов

3.4 Одноканальная СМО с ограниченной длиной очереди

3.5 Одноканальная СМО с неограниченной очередью

3.6 Многоканальная СМО с ограниченной длиной очереди

3.7 Многоканальная СМО с неограниченной очередью

3.8 Анализ системы массового обслуживания супермаркета

ЗАКЛЮЧЕНИЕ


Введение

В настоящее время появилось большое количество литературы, посвященной непосредственно теории массового обслуживания, развитию ее математических аспектов, а также различных сфер ее приложения - военной, медицинской, транспортной, торговле, авиации и др.

Теория массового обслуживания опирается на теорию вероятностей и математическую статистику. Первоначальное развитие теории массового обслуживания связано с именем датского ученого А.К. Эрланга(1878-1929),с его трудами в области проектирования и эксплуатации телефонных станций.

Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др. Большой вклад в развитие этой теории внесли российские математики А.Я. Хинчин, Б.В. Гнеденко, А.Н. Колмогоров, Е.С. Вентцель и др.

Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживания, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами. Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого, варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и от простоев каналов обслуживания.

В коммерческой деятельности применение теории массового обслуживания пока не нашло желаемого распространения.

В основном это связано с трудностью постановки задач, необходимостью глубокого понимания содержания коммерческой деятельности, а также надежного и точного инструментария, позволяющего просчитывать в коммерческой деятельности различные варианты последствий управленческих решений.


Глава I . Постановка задач массового обслуживание

1.1 Общие понятие теории массового обслуживания

Природа массового обслуживания, в различных сферах, весьма тонка и сложна. Коммерческая деятельность связана с выполнением множества операций на этапах движения, например товарной массы из сферы производства в сферу потребления. Такими операциями являются погрузка товаров, перевозка, разгрузка, хранение, обработка, фасовка, реализация. Кроме таких основных операций процесс движения товаров сопровождается большим количеством предварительных, подготовительных, сопутствующих, параллельных и последующих операций с платежными документами, тарой, деньгами, автомашинами, клиентами и т.п.

Для перечисленных фрагментов коммерческой деятельности характерны массовость поступления товаров, денег, посетителей в случайные моменты времени, затем их последовательное обслуживание (удовлетворение требований, запросов, заявок) путем выполнения соответствующих операций, время выполнения которых носит также случайный характер. Все это создает неравномерность в работе, порождает недогрузки, простой и перегрузки в коммерческих операциях. Много неприятностей доставляют очереди, например, посетителей в кафе, столовых, ресторанах, или водителей автомобилей на товарных базах, ожидающих разгрузки, погрузки или оформления документов. В связи с этим возникают задачи анализа существующих вариантов выполнения всей совокупности операций, например, торгового зала супермаркета, ресторана или в цехах производства собственной продукции для целей оценки их работы, выявления слабых звеньев и резервов для разработки в конечном итоге рекомендаций, направленных на увеличение эффективности коммерческой деятельности.

Кроме того, возникают другие задачи, связанные с созданием, организацией и планированием нового экономичного, рационального варианта выполнения множества операций в пределах торгового зала, кондитерского цеха, всех звеньев обслуживания ресторана, кафе, столовой, планового отдела, бухгалтерии, отдела кадров и др.

Задачи организации массового обслуживания возникают практически во всех сферах человеческой деятельности, например обслуживание продавцами покупателей в магазинах, обслуживание посетителей на предприятиях общественного питания, обслуживание клиентов на предприятиях бытового обслуживания, обеспечение телефонных разговоров на телефонной станции, оказание медицинской помощи больным в поликлинике и т.д. Во всех приведенных примерах возникает необходимость в удовлетворении запросов большого числа потребителей.

Перечисленные задачи можно успешно решать с помощью методов и моделей специально созданной для этих целей теории массового обслуживания (ТМО). В этой теории поясняется, что обслуживать необходимо кого-либо или что-либо, что определяется понятием «заявка (требование) на обслуживание», а операции обслуживания выполняются кем-либо или чем-либо, называемыми каналами (узлами) обслуживания. Роль заявок в коммерческой деятельности выполняют товары, посетители, деньги, ревизоры, документы, а роль каналов обслуживания - продавцы, администраторы, повара, кондитеры, официанты, кассиры, товароведы, грузчики, торговое оборудование и др. Важно заметить, что в одном варианте, например, повар в процессе приготовления блюд является каналом обслуживания, а в другом - выступает в роли заявки на обслуживание, например к заведующему производством за получением товара.

Заявки в силу массовости поступления на обслуживание образуют потоки, которые до выполнения операций обслуживания называются входящими, а после возможного ожидания начала обслуживания, т.е. простоя в очереди, образуют потоки обслуживания в каналах, а затем формируется выходящий поток заявок. В целом совокупность элементов входящего потока заявок, очереди, каналов обслуживания и выходящего потока заявок образует простейшую одноканальную систему массового обслуживания - СМО.

Под системой понимается совокупность взаимосвязанных и. целенаправленно взаимодействующих частей (элементов). Примерами таких простейших СМО в коммерческой деятельности являются места приема и обработки товаров, узлы расчета с покупателями в магазинах, кафе, столовых, рабочие места экономист та, бухгалтера, коммерсанта, повара на раздаче и т.д.

Процедура обслуживания считается завершенной, когда заявка на обслуживание покидает систему. Продолжительность интервала времени, требуемого для реализации процедуры обслуживания, зависит в основном от характера запроса заявки на обслуживание, состояния самой обслуживающей системы и канала обслуживания.

Действительно, продолжительность пребывания покупателя в супермаркете зависит, с одной стороны, от личностных качеств покупателя, его запросов, от ассортимента товаров, который он собирается приобрести, а с другой - от формы организации обслуживания и обслуживающего персонала, что может значительно повлиять на время пребывания покупателя в супермаркете и интенсивность обслуживания. Например, овладение кассирами-контролерами работы «слепым» методом на кассовом аппарате позволило увеличить пропускную способность узлов расчета в 1,3 раза и сэкономить время, затрачиваемое на расчеты с покупателями по каждой кассе более чем на 1,5 ч в день. Внедрение единого узла расчета в супермаркете дает ощутимые преимущества покупателю. Так, если при традиционной форме расчетов время обслуживания одного покупателя составляло в среднем 1,5 мин, то при введении единого узла расчета - 67 с. Из них 44 с уходят на оформление покупки в секции и 23 с непосредственно на расчеты за покупки. Если покупатель делает несколько покупок в разных секциях, то потери времени сокращаются при приобретении двух покупок в 1,4 раза, трех - в 1,9, пяти - в 2,9 раза.

Под обслуживанием заявок будем понимать процесс удовлетворения потребности. Обслуживание имеет различный характер по своей природе. Однако, во всех примерах поступившие заявки нуждаются в обслуживании со стороны какого-либо устройства. В некоторых случаях обслуживание производится одним человеком (обслуживание покупателя одним продавцом, в некоторых - группой людей (обслуживание больного врачебной комиссией в поликлинике), а в некоторых случаях - техническими устройствами (продажа газированной воды, бутербродов автоматами). Совокупность средств, которые осуществляют обслуживание заявок, называется каналом обслуживания.

Если каналы обслуживания способны удовлетворить одинаковые заявки, то каналы обслуживания называются однородными. Совокупность однородных каналов обслуживания называется обслуживающей системой.

В систему массового обслуживания поступает большое количество заявок в случайные моменты времени, длительность обслуживания которых также является случайной величиной. Последовательное поступление заявок в систему обслуживания называется входящим потоком заявок, а последовательность заявок, покидающих систему обслуживания,- выходящим потоком.

Московский государственный технический университет

имени Н.Э. Баумана (Калужский филиал)

Кафедра высшей математики

Курсовая работа

по курсу «Исследование операций»

Имитационное моделирование системы массового обслуживания

Задание на работу: Составить имитационную модель и рассчитать показатели эффективности системы массового обслуживания (СМО) со следующими характеристиками:

Число каналов обслуживания n; максимальная длина очереди т;

Поток поступающих в систему заявок простейший со средней интенсивностью λ и показательным законом распределения времени между поступлением заявок;

Поток обслуживаемых в системе заявок простейший со средней интенсивностью µ и показательным законом распределения времени обслуживания.

Сравнить найденные значения показателей с результатами. полученными путем численного решения уравнении Колмогорова для вероятностей состояний системы. Значения параметров СМО приведены в таблице.


Введение

Глава 1. Основные характеристики CМО и показатели их эффективности

1.1 Понятие марковского случайного процесса

1.2 Потоки событий

1.3 Уравнения Колмогорова

1.4 Финальные вероятности и граф состояний СМО

1.5 Показатели эффективности СМО

1.6 Основные понятия имитационного моделирования

1.7 Построение имитационных моделей

Глава 2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

2.2 Расчет показатели эффективности системы по финальным вероятностям

Глава 3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

3.2 Блок-схема программы

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Заключение

Литература

Приложение 1

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО).

Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок.

В качестве показателей эффективности СМО используются:

Абсолютная пропускная способность системы (А), т.е. среднее число заявок, обслуживаемых в единицу времени;

Относительная пропускная способность (Q), т.е. средняя доля поступивших заявок, обслуживаемых системой;

Вероятность отказа обслуживания заявки (

);

Среднее число занятых каналов (k);

Среднее число заявок в СМО (

);

Среднее время пребывания заявки в системе (

);

Среднее число заявок в очереди (

);

Среднее время пребывания заявки в очереди (

);

Среднее число заявок, обслуживаемых в единицу времени;

Среднее время ожидания обслуживания;

Вероятность того, что число заявок в очереди превысит определенное значение и т.п.

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.


Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния

можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени

вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

1.2 Потоки событий

Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная:

.

Поток событий называется ординарным, если вероятность попадания на малый участок времени

двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени

Похожие публикации