Систематическая ошибка отбора. Систематические и случайные ошибки

ОПРЕДЕЛЕНИЕ ОШИБОК ИЗМЕРЕНИЙ

Ошибки (погрешности), возникающие при измерениях, делятся на два больших класса: погрешности случайные и погрешности систематические. Для уяснения разницы между ними обратимся к конкретному примеру. Допустим, вы определяете массу тела взвешиванием его на рычажных весах. Обычно тело кладется на левую чашку весов, а разновесы – на правую. Плечи весов, разумеется, не могут быть абсолютно одинаковыми. Разница в их длине искажает результаты измерений и, притом, всегда одинаковым образом. Ошибки, сохраняющие величину и знак от опыта к опыту, носят название систематических. К систематическим относятся ошибки, связанные с неравноплечностью весов, неправильным весом гирь, неточной разбивкой шкалы измерительных приборов и т.д.

Однако, систематические ошибки не единственные причины погрешностей измерений. В том же опыте со взвешиванием тела есть ошибки, которые могут изменяться от опыта к опыту. В самом деле, коромысло весов качается с некоторым трением. Поэтому, даже при постоянной нагрузке весов, оно останавливается не всегда в одном и том же месте а в разных местах, лежащих в области, размер которой определяется силами трения. Ошибки в этом случае от опыта к опыту не повторяются.

Случайными ошибками называются ошибки, которые непредсказуемым образом изменяют свою величину и знак от опыта к опыту.

Бывают случаи, когда случайные ошибки не связаны с дефектами аппаратуры, а лежат в сущности изучаемого явления.

Так, например, если вы изучаете радиоактивный распад какого-либо радиоактивного элемента, то число зарегистрированных распадов, скажем, в 1 минуту, не будет оставаться постоянным. В одних измерениях вы зарегистрируете, например, 18,15,12,17 распадов в минуту, в других – 23, 25, 17, 22 распадов. В среднем вы получите 20 распадов в минуту. Отклонение измеренного числа распадов от среднего значения 20 распадов в минуту носит чисто случайный характер. И связано с самой природой изучаемого явления.

Влияние случайных ошибок может быть уменьшено при многократном повторении опыта, т.к. опыты, результаты которых превышают среднее значение будут встречаться столь же часто, как и опыты с результатами меньшими среднего значения.

Уменьшить же вклад систематических ошибок таким способом нельзя. Главной причиной этих погрешностей является несовершенство измерительных приборов. Поэтому для их уменьшения необходимо воспользоваться более совершенными средствами измерений, погрешность которых меньше. Качество измерительных приборов характеризуется их классом точности, т.е. той максимальной погрешностью, которую могут вносить эти приборы в измеряемую величину. Чем выше класс точности прибора тем эта погрешность ниже. Помимо необходимости совершенствовать приборы, можно изменить методику опыта. Например, в опыте со взвешиванием нужно либо уменьшить неравноплечность весов, либо взвешивать тело дважды, один раз на левой чашке весов, другой – на правой и усреднить полученные результаты.

Ошибки измерения делятся на случайные (тот самый шум, о котором шла речь ранее) и систематические. Прояснить, что такое систематическая ошиб­ка, можно на следующем примере: предположим, мы немного изменим в схеме по рис. 13.3 сопротивление резистора R2. При этом у нас на опреде­ленную величину сдвинется вся шкала измерений: показания термометра бу­дут соответствовать действительности, только если мы прибавим (или вы­чтем, неважно) некоторую константу к полученной величине: / = /’ + 5, где / - «правильное» значение температуры (оно все же отличается от истинно­го значения из-за наличия случайной ошибки); /’ - показания термометра; 5 - величина систематической ошибки из-за сдвига шкалы. Более сложный случай систематической погрешности - если мы оставим R2 в покое, а не­много изменим R5, то есть изменим наклон характеристики термометра, или, как еще это называют, крутизну преобразования. Это равносильно тому, что мы умножаем показания на некий постоянный множитель к, и «правильное» значение будет тогда определяться по формуле: t = ht\ Эти виды ошибок но­сят название аддитивной и мультипликативной погрешностей.

О систематических погрешностях математическая статистика «ничего не зна­ет», она работает только с погрешностями случайными. Единственный спо­соб избавиться от систематических погрешностей (кроме, конечно, подбора прецизионных компонентов) - это процедуры калибровки (градуировки), о них мы уже говорили в этой главе ранее.

Случайные ошибки измерения и их оценка

я предполагаю, что читатель знаком с таким понятием, как вероятность. Ес­ли же нет - настоятельно рекомендую книгу , которая есть переиздание труда от 1946 г. Расширить кругозор вам поможет классический учебник , который отличает исключительная внятность изложения (автор его, извест­ный математик Елена Сергеевна Вентцель, кроме научной и преподаватель­ской деятельности, также писала художественную литературу под псевдони­мом И. Грекова). Более конкретные сведения о приложении методов математической статистики к задачам метрологии и обработки эксперимен­тальных данных, в том числе с использованием компьютера, вы можете най­ти, например, в . Мы же остановимся на главном - расчете случайной по­грешности.

В основе математической статистики лежит понятие о нормальном распре­делении. Не следует думать, что это нечто заумное - вся теория вероятно­стей и матстатистика, как прикладная дисциплина, в особенности, основа­ны на здравом смысле в большей степени, чем какой-либо другой раздел математики.

Не составляет исключения и нормальный закон распределения, который на­глядно можно пояснить так. Представьте себе, что вы ждете автобус на оста­новке. Предположим, что автопарк работает честно, и надпись на табличке «интервал 15 мин» соответствует действительности. Пусть также известно, что предыдущий автобус отправился от остановки ровно в 10:00. Вопрос - во сколько отправится следующий?

Как бы идеально ни работал автопарк, совершенно ясно, что ровно в 10:15 следующий автобус отправится вряд ли. Пусть даже автобус выехал из парка по графику, но тут же был вынужден его нарушить из-за аварии на перекре­стке. Потом его задержал перебегающий дорогу школьник. Потом он просто­ял на остановке из-за старушки с огромной клетчатой сумкой, которая за­стряла в дверях. Означает ли это, что автобус всегда только опаздывает? От­нюдь, у водителя есть план, и он заинтересован в том, чтобы двигаться побы­стрее, потому он может кое-где и опережать график, не гнушаясь иногда и нарушением правил движения. Поэтому событие, заключающееся в том, что автобус отправится в 10.15, имеет лишь определенную вероятность, не более.

Если поразмыслить, то станет ясно, что вероятность того, что следующий автобус отправится от остановки в определенный момент, зависит также от того, насколько точно мы определяем этот момент. Ясно, что вероятность отправления в промежутке от 10.10 до 10.20 гораздо выше, чем в промежутке от 10.14 до 10.16, а в промежутке от 10 до 11 часов оно, если не возникли ка­кие-то форс-мажорные обстоятельства, скорее всего, произойдет наверняка. Чем точнее мы определяем момент события, тем меньше вероятность того, что оно произойдет именно в этот момент, и в пределе вероятность того, что любое событие произойдет ровно в указанный момент времени, равна нулю.

Такое кажущееся противоречие (на которое, между прочим, обращал внима­ние еще великий отечественный математик Колмогоров) на практике разре­шается стандартным для математики способом: мы принимаем за момент события некий малый интервал времени 5/. Вероятность того, что событие произойдет в этом интервале, уже равна не нулю, а некоей конечной величи­не бЛ а их отношение 5P/5t при устремлении интервала времени к нулю рав­на для данного момента времени некоей величине /?, именуемой плотностью распределения вероятностей. Такое определение совершенно аналогично определению плотности физического тела (в самом деле, масса исчезающе малого объема тела также стремится к нулю, но отношение массы к объему конечно) и потому многие понятия математической статистики имеют назва­ния, заимствованные из соответствующих разделов физики.

Правильно сформулированный вопрос по поводу автобуса звучал бы так: ка­ково распределение плотности вероятностей отправления автобуса во време­ни? Зная эту закономерность, мы можем всегда сказать, какова вероятность того, что автобус отправится в определенный промежуток времени.

Интуитивно форму кривой распределения плотности вероятностей опреде­лить несложно. Существует ли вероятность того, что конкретный автобус отправится, к примеру, позже 10:30 или, наоборот, даже раньше предыдуще­го автобуса? А почему нет - подобные ситуации в реальности представить себе очень легко. Однако ясно, что такая вероятность намного меньше, чем вероятность прихода «около 10:15». Чем дальше в обе стороны мы удаляемся от этого центрального наиболее вероятного срока, тем меньше плотность ве­роятности, пока она не станет практически равной нулю (то, что автобус за­держится на сутки - событие невероятное, скорее всего, если такое случи­лось, вам уже будет не до автобусов). То есть распределение плотностей ве­роятностей должно иметь вид некоей колоколообразной кривой.

В теории вероятностей доказывается, что при некоторых предположениях относительно вероятности конкретных исходов нашего события, эта кривая будет иметь совершенно определенный вид, который называется нормаль­ным распределением вероятностей или распределением Гаусса. Вид кривой плотности нормального распределения и соответствующая формула показа­ны на рис. 13.5.

Рис. 13.5. Плотность нормального распределения вероятностей

Далее мы поясним смысл отдельных параметров в этой формуле, а пока отве­тим на вопрос: действительно ли реальные события, в частности, интере­сующие нас ошибки измерения, всегда имеют нормальное распределение? Строгого ответа на этот вопрос в общем случае нет, и вот по какой причине. Математики имеют дело с абстракциями, считая, что мы уже имеем сколь угодно большой набор отдельных реализаций события (в случае с автобусом это была бы бесконечная таблица пар значений «плотность вероятности - время»). В реальной жизни такой ряд невозможно получить не только пото­му, что для этого потребовалось бы бесконечно долго стоять около остановки и отмечать моменты отправления, но и потому, что стройная картина непре­рывного ряда реализаций одного события (прихода конкретного автобуса) будет в конце концов нарушена совершенно не относящимися к делу веща­ми: маршрут могут отменить, остановку перепестри, автопарк обанкротится, не выдержав конкуренции с маршрутными такси… да мало ли что может произойти такого, что сделает бессмысленным само определение события.

Однако все же интуитивно понятно, что, пока автобус ходит, какое-то, пусть теоретическое, распределение имеется. Такой идеальный бесконеч­ный набор реализаций данного события носит название генеральной сово­купности. Именно генеральная совокупность при некоторых условиях мо­жет иметь, в частности, нормальное распределение. В реальности же мы имеем дело с выборкой из этой генеральной совокупности. Причем одна из важнейших задач, решаемых в математической статистике, состоит в том, чтобы имея на руках две разных выборки, доказать, что они принадлежат одной и той же генеральной совокупности - проще говоря, что перед нами есть реализации одного и того же события. Другая важнейшая для практи­ки задача состоит в том, чтобы по выборке определить вид кривой распре­деления и ее параметры.

На свете сколько угодно случайных событий и процессов, имеющих распре­деление, совершенно отличное от нормального, однако считается (и доказы­вается с помощью т. н. центральной предельной теоремы), что в интересую­щей нас области ошибок измерений при большом числе измерений и истинно случайном их характере, все распределения ошибок - нормальные. Предпо­ложение о большом числе измерений не слишком жесткое - реально доста­точно полутора-двух дес5Гтков измерений, чтобы все теоретические соотно­шения с большой степенью точности соблюдались на практике. А вот про истинную случайность ошибки каждого из измерений можно говорить с из­рядной долей условности: неслучайными их может сделать одно только же­лание экспериментатора побыстрее закончить рабочий день. Но математика тут уже бессильна.

Полученные опытным путем характеристики распределения называются оценками параметров, и, естественно, они будут соответствовать «настоя­щим» значениям с некоторой долей вероятности - наша задача и состоит в том, чтобы определить интервал, в котором могут находиться отклонения оценок от «истинного» значения и соответствующую ему вероятность. Но настало время все же пояснить - что же это за параметры?

в формуле на рис. 13.5 таких параметра два- величины ц и а. Они называ­ется моментами нормального распределения (аналогично моментам распре­деления масс в механике). Параметр ц называется математическим ожидани­ем (или моментом распределения первого порядка), а величина а - средним квадратическим отклонением. Нередко употребляют его квадрат, обозначае­мый как D или просто и носящий название дисперсии (или центрального момента второго порядка).

Математическое ожидание есть абсцисса максимума кривой нормального распределения (в нашем примере с автобусом это время 10:15), а дисперсия, как видно из рис. 13.5, характеризует «размытие» кривой относительно этого максимума- чем больше дисперсия, тем положе кривая. Этим моменты имеют прозрачный физический смысл (вспомните аналогию с фи^зическим распределением плотностей): математическое ожидание есть аналогия цен­тра масс некоего тела, а дисперсия характеризует распределение масс отно­сительно этого центра (хотя распределение плотности материи в физическом теле далеко от нормального распределения плотности вероятности).

Оценкой гпх математического ожидания ц служит хорошо знакомое нам со школы среднее арифметическое:

Здесь п- число измерений; /- текущий номер измерения (/= l,…,w); дс/ - значение измеряемой величины в /-м случае.

Оценка дисперсии вычисляется по формуле:

(2)

Оценка среднего квадратического отклонения, соответственно, будет:

Здесь (jc, – гПх) - отклонения конкретных измерений от ранее вычисленного среднего.

Следует особо обратить внимание, что сумму квадратов отклонений делить следует именно на « – 1, а не на «, как может показаться на первый взгляд, иначе оценка получится смещенной. Второе, на что следует обратить внима­ние - разброс относительно среднего характеризует именно среднее квадра-тическое отклонение, вычисленное по формулам (2) и (3), а не среднее арифметическое отклонение, как рекомендуют в некоторых школьных справочни­ках - последнее дает заниженную и смещенную оценку (не напоминает ли вам это аналогию со средним арифметическим и действующим значениями переменного напряжения?).

Заметки на полях

Кроме математического ожидания, средние значения распределения вероят­ностей характеризуют еще величинами, называемыми модой и медианой. В случае нормального распределения все три величины совпадают, но в дру­гих случаях они могут оказаться полезными: мода есть абсцисса наивероят-нейшего значения (то есть максимума на кривой распределения, что полно­стью отвечает бытовому понятию о моде), а медиана выборки есть такая точка, что половина выборки лежит левее ее, а вторая половина - правее.

В принципе этими формулами для расчета случайных погрешностей можно было бы ограничиться, если бы не один важный вопрос: оценки-то мы полу­чили, а вот в какой степени они отвечают действительности? Правильно сформулированный вопрос будет звучать так: какова вероятность того, что среднее арифметическое отклоняется от «истинного» значения (то есть мате­матического ожидания) не более чем на некоторою величину 8 (например, на величину оценки среднего квадратического отклонения s)?

Величина 5 носит название доверительного интервала, а соответствующая вероятность - доверительной вероятностью (или надежностью). Обычно решают задачу, противоположную сформулированной: задаются величиной надежности и вычисляют доверительный интервал 5. В технике принято за­даваться величиной надежности 95%, в очень уж серьезных случаях - 99%. Простейшее правило для обычных измерений в этом случае таково: при уело-вии достаточно большого числа измерений (практически - более 15-20) доверительной вероятности в 95% соответствует доверительный интер­вал в 2Sy а доверительной вероятности в 99% - доверительный интервал в 3s. Это известное правило «трех сигма», согласно которому за пределы утро­енного квадратического отклонения не выйдет ни один результат измерения, но на практике это слишком жесткое требование. Если мы не поленимся про­вести не менее полутора десятков отдельных измерений величины дс, то с чистой совестью можем записать, что результат будет равен

Анализа необходимо по затраченному объему раствора H I и его концентрации вычислить из уравнения реакции соответствующее количество определяемой щелочи. Если концентрация раствора H I была в свое время определена неверно, то эта ошибка в качестве постоянной систематической ошибки отразится на всех результатах отдельных определений и, несмотря на хорошую воспроизводимость, полученные результаты будут совершенно неправильными. 


    По своему характеру ошибки анализа подразделяются на 1) систематические ошибки 2) случайные ошибки 3) промахи. 

Систематические ошибки. Систематическими ошибками называют погрешности, одинаковые по знаку, происходящие от определенных причин, влияющих на результат либо в сторону увеличения, либо в сторону уменьшения его. Систематические ошибки можно обычно предусмотреть и устранить их или же ввести соответствующие поправки. Отметим следующие виды систематических ошибок. 

Действительно, при этом условии все систематические ошибки определения будут совершенно одинаковыми в обоих случаях и на результате определения не отразятся. 

Т - истинное значение II - среднее значение III - систематическая ошибка IV - область случайных колебаний. 

Ошибки оперативные. Оперативные ошибки происходят от неправильного или недостаточно тщательного выполнения аналитических операций . Сюда относится, например, недостаточное промывание осадков , приводящее к постоянному завышению результатов, иногда - излишнее промывание осадков , приводящее к систематическим потерям. Систематические ошибки появляются также в результате недостаточной или чрезмерной продолжительности прокаливания осадков , недостаточно тщательного перенесения осадков из стакана в тигель, неправильного способа выливания растворов из пипеток и т. п. 

Систематическая ошибка обусловлена погрешностями измерительных устройств (что становится причиной получения слишком больших или малых значений измеряемой величины) либо неправильной методикой проведения измерений (например, пренебрежением влияния температуры окружающей среды , колебания атмосферного давления и т. п.). Систематическую ошибку можно компенсировать, вводя в расчет результата измерения соответствующие поправки. 

Как же надо обрабатывать результаты отдельных измерений (каждое из которых содержит случайную ошибку) для того, чтобы получить величину, более всего приближающуюся к точному значению Приступая к решению этой задачи, мы предполагаем, что систематические ошибки исключены. 

Систематические ошибки зависят от используемого метода или прибора иногда их называют методическими ошибками . Они связаны как с допущениями, принятыми при разработке метода измерения, так и с возможными смещениями показаний приборов (сдвиг пулевой точки и т. п.). Отличительной чертой таких ошибок является смещение измеряемых величин в одну сторону от

Очевидно, что применение математических методов не может дать ответ на вопрос, насколько у отличается от (х, если имеют место систематические ошибки физического метода . Математическая статистика в этом случае позволит лишь оценить область вокруг у, в которой могут находиться величины у[. Величина у будет хорошей оценкой х, если возможны только случайные ошибки только при этом условии справедлива левая часть соотношения (И-2). 

Случайными называются погрешности непостоянные по знаку и величине, вызываемые большим количеством случайных причин, которые приводят к рассеиванию размеров деталей относительно систематической ошибки. Появление случайных ошибок незакономерно, поэтому величину их нельзя определить заранее. 

Функциональные погрешности разделяются на определенные и неопределенные. Функционально определенные - это такие ошибки, величина и закономерность изменения которых может быть определена аналитически, т. е. они являются систематическими ошибками, изменяющимися по определенному закону. 

Выявляются и суммируются систематические ошибки (координаты середины полей допусков) для групп составляющих размеров, имеющих только скалярные ошибки - по формуле (39) векторные ошибки - по формуле (53) функционально связанные ошибки - по формуле (56) коррелятивно связанные ошибки- по формуле (59) силовые и температурные деформации - по формуле (60) зазоры -по формуле (70). 

Пример 3. Поле рассеивания отклонений непараллельности осей шатунных и коренных шеек коленчатого вала компрессора 4АУ-15 (фиг. 16) равно по величине допуску на изготовление, т. е. выбранный круглошлифовальный станок соответствует требуемой точности, но имеется значительная погрешность базирования валов в приспособлении (систематическая ошибка). 

Установлено, что нри определении концентраций веществ без систематической ошибки оценки констант , минимизирующие квадратичную форму Фз, будут несмещенными. Вычисление концентраций J производится или на основе интегральной формы кинетического уравнения , или численным интегрированием системы кинетических уравнений. 

Точки плана для построения полинома степени п выбирают таким образом, чтобы получить минимальную величину систематической ошибки, связанной с тем, что функция отклика есть полином степени Лг> . Принципы, используемые при выборе подходящих планов, были предложены ранее Боксом и Дрепером . 

Успех подобного подхода свидетельствует о том, что обсуждаемая поправка (на которую, вообще говоря, могут влиять и другие, не учитываемые здесь систематические ошибки) достаточно устойчива в пределах одного титрования. Такую устойчивость отмечали также Гордиенко и Сидоренко , применявшие поправки к pH при определении констант кислотно -основных равновесий. 

Все приведенные планы построены в предположении, что существует только систематическое смещение. На практике обычно кроме систематической ошибки экспериментальные данные содержат также и случайную ошибку. 

Основанное иа этих приемах планирование существенно снижает влияние не только случайных, но и систематических ошибок в первичных данных. Роль последних часто игнорируется без каких-либо оснований. Вместе с тем систематические ошибки могут приводить к полному обесцениванию конечны. результатов. 

Систематическая ошибка при измерении pH компенсируется соответствующим изменением коэффициента активности (подбором эффективного коэффициента активности). Пусть в нашем распоряжении есть алгоритм и программа для определения нескольких неизвестных констант ЗДМ по потенциометрическим (например, рН-метрическим) измерениям. Тогда никто не мешает включить в число неизвестных констант и константу формальной реакции получения отнесенной к базису частицы, активность которой мы измеряем. В логарифм этой константы войдет поправка, компенсирующая систематическую ошибку потенциометрических измерений. 

Оценку для систематической ошибки сдвига аналитического состава раствора Ах1. можно получить из уравнений материального баланса для закрытой системы с учетом изменения состава паровой фазы  

Загружаемые угли сушили в промышленных условиях с доведением остаточной влажности до 1-3%. Для получения индекса производительности на сухую массу /о экспериментальные величины корректировали, принимая относительное изменение индекса производительности равным 2,5% на каждый процент влажности. Выше говорилось, что этот коэффициент вариации , по-видимому, зависит от природы угля, поэтому получается систематическая ошибка в определении /ц, но она не превышает 1%. Напомним, что случайная ошибка средней загрузки (из шести) обычно составляет 2%, тогда общая ошибка - порядка 3%. 

Внутренние возмущения, систематические ошибки измерения Отказ отдельных подсистем, аварии 

Итак, величины / - содержат как ошибки измерений (будем считать их случайными), так и систематические ошибки, вызванные неадекватностью модели. 

Еще раз напомним, что величины е, вычисляемые описанным выше способом, характеризуют только влияние случайных, но не систематических ошибок анализа. Анализ может оказаться совершенно неправильным, несмотря на хорошую точность, т, е, на малую величину е, если при анализе были какие-либо систе матические ошибки. Отсутствие систематических ошибок может быть установлено сопоставлением разницы между полученным при анализе средним арифметическим () и истинным содержанием (а) определяемого элемента , т, е. ошибки А=х - а с е. Если Д

Систематические ошибки иногда можно установить по наличию некоторой постоянной тенденции. Так, если отклонение экспериментальных данных от средних величин распределено не случайно, а имеет в условиях эксперимента постоянную тенденцию, то можно ожидать систематической ошибки. Такое отклонение имеет значение, если оно больше ожидаемой ошибки в определении Предварительное обнаружение систематических ошибок требует некоторых навыков, так как для этого необходимо знание природы шаучаемой системы. 

Таким образом, небольшое значение е свидетельствует лишь о высокой точности измерений , но не об их правильности, так как все измерения могут содержать одну и ту же, и при этом значительную систематическую ошибку (например, вследствие неисправности прибора). Экспериментатор должен заранее позаботиться о том, чтобы такая ошибка была бы исключена (папример, устранением разрыва нити термометра Бекмапа). 

Рассмотрим причины, влияющие на ошибку измерения на примере с объемом газа, который упоминался выше. Ошибка измеряемого объема слагается из систематической ошибки и случайной ошибки измерения . Систематическая ошибка характеризует методическую правильность измерения , тогда как случайная ошибка определяется конкретными условиями отдельного измерения. Допустим, например, что объем газа измерялся при помощи 50-миллиметровой газовой бюретки . Указанный вьшде объем 

Систематические ошибки постоянны во всей серпи измерений или изменяются по определенному закону. Выявление их требует специальных исследований, но как только систематические ошибки обнаружены, они могут быть легко устранены введением соответствующих поправок в результаты измерения. 

Дри исследовании одноосновной кислоты средней силы последнюю реакцию в матрице (1) можно не учитывать. Напротив, опуская

Ошибки измеренийподразделяются на систематические и случайные.

Величина систематических ошибок одинакова во всех измерениях, проводящихся одним и тем же методом с помощью одних и тех же измерительных приборов. Различают четыре группы систематических ошибок:

1) ошибки, причина возникновения которых известна и величина которых может быть определена достаточно точно. Например, при определении результата прыжка рулеткой возможно изменение её длины за счёт различий в температуре воздуха. Это изменение можно оценить и ввести поправки в измеренный результат;

2) ошибки, причина возникновения которых известна, а величина нет. Такие ошибки зависят от класса точности измерительной аппаратуры. Например, если класс точности динамометра для измерения силовых качеств спортсменов составляет 2.0, то его показания правильны с точностью до 2% в пределах шкалы прибора. Но если проводить несколько измерений подряд, то ошибка в первом из них может быть равной 0,3%, а во втором – 2%, в третьем – 0,7% и т. д. При этом точно определить её значения для каждого из измерений нельзя;

3) ошибки, происхождение которых и величина неизвестны. Обычно они проявляются в сложных измерениях, когда не удаётся учесть все источники возможных погрешностей;

4) ошибки, связанные не столько с процессом измерения, сколько со свойствами объекта измерения. Как известно, объектами измерений в спортивной практике являются действия и движения спортсмена, его социальные, психологические, биохимические и т. п. показатели. Измерения такого типа характеризуются определённой вариативностью, и в её основе может быть множество причин. Рассмотрим следующий пример. Предположим, что при измерении времени сложной реакции хоккеистов используется методика, суммарная систематическая погрешность которой по первым трём группам не превышает 1%. Но в серии повторных измерений конкретного спортсмена получаются такие значения времени реакции (ВР): 0,653 с; 0,526 с; 0,755 с и т. д. Различия в результатах измерений обусловлены внутренними свойствами спортсменов: один из них стабилен и реагирует практически одинаково быстро во всех попытках, другой – нестабилен. Однако и эта стабильность (или нестабильность) может измениться в зависимости от утомления, эмоционального возбуждения, повышения уровня подготовленности.

Систематический контроль за спортсменами позволяет определить меру их стабильности и учитывать возможные погрешности измерений.

В некоторых случаях ошибки возникают по причинам, предсказать которые заранее невозможно. Такие ошибки называются случайными. Их выявляют и учитывают с помощью математического аппарата теории вероятностей.

Перед проведением любых измерений нужно определить источники систематических погрешностей и по возможности устранить их. Но так как полностью это сделать нельзя, то внесение поправок в результат измерения позволяет исправить его с учётом систематической погрешности.

Для устранения систематической погрешности используют:

а) тарирование – проверку показаний измерительных приборов путём сравнения их с показаниями эталонов во всём диапазоне возможных значений измеряемой величины;

б) калибровку – определение погрешностей и величины поправок.

Под случайными величинами понимают числовые характеристики случайных событий. Другими словами, случайные величины – это числовые результаты экспериментов, значения которых которые невозможно (в данное время) предсказать заранее. Случайные величины делят на дискретные и непрерывные в зависимости от того, каково множество всех возможных значений соответствующей характеристики – дискретное или же непрерывное.

Это деление довольно условно, но полезно при выборе адекватных методов исследования.

Случайные величины можно задавать разными способами. Дискретные случайные величины обычно задаются своим законом распределения. Тут каждому возможному значению x1, x2,... случайной величины X сопоставляется вероятность p1,p2,... этого значения. В результате образуется таблица, состоящая из двух строк:

Это и есть закон распределения случайной величины. Непрерывные случайные величины законом распределения задать невозможно, так как по самому своему определению их значения невозможно перенумеровать и потому задание в виде таблицы тут исключается. Однако для непрерывных случайных величин есть другой способ задания (применимый, кстати, и для дискретных величин) –это функция распределения:

равная вероятности события , которое состоит в том, что случайная величина X примет значение, меньшее заданного числа x.

14 При обработке данных используют такие характеристики случайной величины Х как моменты порядка q, т.е. математические ожидания случайной величины Xq, q = 1, 2, … Так, само математическое ожидание – это момент порядка 1. Для дискретной случайной величины момент порядка q может быть рассчитан как

Для непрерывной случайной величины

Моменты порядка q называют также начальными моментами порядка q, в отличие от родственных характеристик – центральных моментов порядка q, задаваемых формулой

Вопрос.

Диспе́рсия случа́йной величины́ - мера разброса данной случайной величины, то есть её отклонения от математического ожидания

Дисперсией дискретной случайной величины называют сумму квадратов отклонения значений случайной величины от своего математического ожидания. Дисперсия показывает величину разброса значений случайной величины от своего математического ожидания.

Пусть - случайная величина, определённая на некотором вероятностном пространстве. Тогда

D{X}=M [|X-M[X]| 2 ] , где символ M обозначает математическое ожидание.

Дисперсия любой случайной величины неотрицательна:

Если дисперсия случайной величины конечна, то конечно и её математическое ожидание;

Если случайная величина равна константе, то её дисперсия равна нулю

Дисперсия суммы двух случайных величин равна: , где - их ковариация;

Вероятность того, что истинное значение измеряемой величины лежит внутри некоторого интервала, называется доверительной вероятностью, или коэффициентом надежности, а сам интервал - доверительным интервалом. Каждой доверительной вероятности соответствует свой доверительный интервал. Однако это утверждение справедливо только при достаточно большом числе измерений (более 10), да и вероятность 0,67 не представляется достаточно надежной - примерно в каждой из трех серий измерений a может оказаться за пределами доверительного интервала. Для получения большей уверенности в том, что значение измеряемой величины лежат внутри доверительного интервала, обычно задаются доверительной вероятностью 0,95 - 0,99. Доверительный интервал для заданной доверительной вероятности учетом влияния числа измерений n можно найти, умножив стандартное отклонение среднего арифметического на так называемый коэффициент Стьюдента.

Понятие, показывающее, что выводы, сделанные применительно к какой-либо группе, могут оказаться неточными вследствие неправильного отбора в эту группу.

Ошибки отбора результатов

Могут включать предварительный или последующий отбор с превалированием или исключением некоторых видов. Это может быть, конечно, разновидностью научного мошенничества , манипуляцией данными, но гораздо чаще является добросовестным заблуждением, например, вследствие использования неподходящего инструмента.

Например, в эпоху использования плёнки для фотографирования неба независимый наблюдатель определённо пришёл бы к выводу, что количество голубых галактик явно больше, чем количество красных. Не потому, что голубые галактики более распространены, но лишь вследствие того, что большинство плёнок более чувствительны к голубой части спектра. Тот же независимый наблюдатель сделал бы прямо противоположный вывод сейчас, в эпоху цифровой фотографии, потому что матрицы цифровых фотоаппаратов более чувствительны к красной части спектра.

Типы систематических ошибок

Существует большое количество возможных систематических ошибок, основные типы:

Пространство

  • Выбор первой и последней точки в серии. К примеру, для того, чтобы максимизировать заявленный тренд, можно начать серию с года с необычно низкими показателями и закончить годом с самыми высокими показателями.
  • «Своевременное» окончание, то есть тогда, когда результаты укладываются в желаемую теорию.
  • Отделение части данных на основе знаний обо всей выборке и затем применение математического аппарата к этой части как к слепой (случайной) выборке. См. Районированная выборка , en:cluster sampling , Ошибка меткого стрелка .
  • Изучение процесса на интервале (во времени или пространстве) длиной заведомо меньшей, чем требуется для полного представления о явлении.

Данные

  • Вычёркивание неких «плохих» данных в соответствии с правилами, хотя бы эти правила и шли вразрез с предварительно объявленными правилами для этой выборки.

Участники

  • Предварительный отбор участников, или, к примеру, размещение объявления о наборе добровольцев для участия в испытаниях среди определённой группы людей. К примеру, для доказательства, что курение никак не вредит результатам фитнеса, можно разместить в местном фитнесцентре объявление для набора добровольцев, но курящих набирать в мастерклассе, а некурящих среди начинающих или в секции желающих сбросить вес. Например: «интернет-опрос населения показал, что 100 % населения пользуются Интернетом».
  • Выбрасывание из выборки участников, не дошедших до конца теста . В программе похудения мы рассматриваем подробные графики сброса веса как доказательство правильности методики, но в эти графики не включены не дошедшие до конца участники, посчитавшие, что на них эта методика не работает.
  • Систематическая ошибка самоотбора. То есть группа людей для изучения формируется частично по собственной воле, так как не все опрошенные пожелают участвовать в тесте.
Похожие публикации