Пожарная безопасность в общеобразовательных учреждениях. НИР «Коммуникативная самоэффективность как важный показатель профессионализма будущих специалистов»

Дипломная работа *

4 700руб.

Покупка временно недоступна

Описание

В настоящее время безопасность становится обязательным условием и одним из критериев эффективности деятельности ОУ. Безопасность как важнейшее условие жизнедеятельности касается всех слоев населения, однако события последних лет свидетельствуют, что особое внимание для ее обеспечения требуется в образовательных учреждениях, где концентрируются большие масса детей, подростков и молодежи. Неотъемлемым элементом системы обеспечения комплексной безопасности образовательного учреждения является система обеспечения его пожарной безопасности. В соответствии с заданием на дипломную работу рассмотрен комплекс вопросов, включающих в себя анализ и разработку мероприятий по обеспечению пожарной безопасности образовательного учреждения. В результате проделанной работы достигнуты следующие результаты: ...

СОДЕРЖАНИЕ
Введение
1. Пожарная безопасность образовательного учреждения
1.1. Требования нормативных документов по пожарной безопасности
1.2 Анализ возможных причин возникновения пожара в образовательном учреждении
1.3. Типичные нарушения требований норм и правил пожарной безопасности, выявляемые органами Государственного пожарного надзора при проверках образовательных учреждений
2. Разработка системы пожарной безопасности образовательного учреждения
2.1. Способы повышения пожарной безопасности зданий образовательных учреждений
2.2. Особенности выбора схемы построения комплекса пожарной безопасности образовательного учреждения
2.3. Выбор и обоснование системы пожарной безопасности учреждения
2.3.1 Выбор и обоснование системы пожарной сигнализации
2.3.2 Технические характеристики используемых элементов системы (датчиков, вторичных приборов и т.д.)
2.3.3 Определение мероприятий и средств обеспечения эвакуации людей
3. Предложения по обеспечению системы пожарной безопасности образовательного учреждения
3.1 Типовые формы документов по организации пожарной безопасности в образовательном учреждении
3.2 Рекомендации по повышению эффективности мер противопожарной профилактики
Заключение
Библиография
Приложения
Приложение А Основные нормативные документы в области пожарной безопасности
Приложение Б Система пожарной сигнализации ОУ (пример)
Приложение В Типы систем оповещения и управления эвакуацией людей при пожаре
Приложение Г Перечень локальных документов образовательного учреждения по пожарной безопасности

Введение

Обеспечение безопасности является одной из приоритеных в существовании любого государства. Самые разные сферы жизни общества, в том числе и национальная система образования, непосредственно затрагиваются ею. Понятия безопасности непосредственно присущи процессам обучения и воспитания граждан, независимо от нахождения в образовательных учреждениях или же за их пределами, они учитываются при организации досуга, отдыха и оздоровления. Иногда и создание комфортных бытовых условий проживания, обеспечение проезда к месту учебы и обратно сопряжены с понятиями безопасности. В последнее время участились случаи возгорания зданий, в том числе и принадлежащих учреждениям образования. Поэтому соблюдению Правил противопожарной безопасности в целях защиты жизни и здоровья учащихся и воспитанников, сохр анения государственного или муниципального имущества в образовательных учреждениях должно уделяться особое внимание. В соответствии с Концепцией комплексной безопасности образовательного учреждения, неотъемлемым элементом системы ее обеспечения является реализация администрацией образовательного учреждения мероприятий по обеспечению его пожарной безопасности [ 23 ] . Высоким уровнем пожарной опасности, присущим именно учебным заведениям и обуславливается актуальность проблемы совершенствования системы безопасности в учреждениях образовательной сферы. Следует также отметить, что в образовательной сфере несовершеннолетних детей вместе с педагогами зафиксировано более 30 млн. человек, а с учетом членов их семей это почти половины населения РФ. Именно поэтому в системе национальной безопасности отдельное место и роль отведено обеспечению безопасности в образовательных учреждениях [ 20 ]. В обозримом будущем проблема борьбы с пожарами в ОУ не утратит своей актуальности и остроты и будет требовать к себе постоянного внимания не только собственников и работников учреждений, но и всех организаций, в обязанности которых входит предупреждение и ликвидация чрезвычайных ситуаций различного характера. Одним из необходимых компонентов нормализации функционирования ОУ является создание и внедрение комплекса обеспечения пожарной безопасности, что определяет актуальность темы исследования. В связи с рассмотренной актуальностью нами сформулирована тема работы: Пожарная безопасность в общеобразовательных учреждениях. При проведении анализа выявлен комплекс противоречий, которые обуславливают необходимость внедрения и совершенствования системы пожарной безопасности ОУ в современных условиях. Можно выделить противоречия между: требованиями безопасности образовательного процесса и состояние технологий управления системами пожарной безопасности; необходимостью усовершенствования системы управления процессом пожарной и материальной безопасности объектов и недостаточным развитием научно – методической базы по обоснованию ее построения и задач. Целью данной работы является анализ и разработка рекомендаций организации мероприятий по обеспечению пожарной безопасности образовательного учреждения. Для достижения цели исследования необходимо решить комплекс взаимосвязанных задач, а именно: провести анализ теоретических и правовых основ обеспечения пожарной безопасности ОУ. предложить на основе анализа способов повышения пожарной безопасности схему построения комплекса пожарной безопасности ОУ. разработать практические рекомендации по обеспечению пожарной безопасности ОУ. Объектом исследования является образовательное учреждение. Предмет исследования – разработка комплекса организационно-технических мероприятий, направленных на обеспечение пожарной безопасности ОУ. Гипотеза исследования. Нормальное функционирование образовательного учреждения будет осуществляться эффективно, если: будет разработана комплексная система пожарной безопасности; будет подобрано необходимое оборудование для обеспечения обнаружения и тушения пожара. Теоретической основой работы послужили научные труды, разработки ведущих российских и зарубежных ученых в области пожарной безопасности образовательных учреждений. Информационной базой работы являются данные статистических отчетов и справочников МЧС России, нормативно-методическая документация, данные периодической печати, информационные ресурсы глобальной сети Интернет. Экспериментальной базой послужили статистические данные, собранные и проанализированные автором по образовательным учреждениям г. Москвы. Выбор методов исследования был обусловлен требованиями наиболее адекватного и полного решения задач на каждом этапе работы. В зависимости от особенностей решаемых задач использовались: абстрактно-логический метод (при постановке целей и задач исследования, обосновании рабочей гипотезы, разработке теоретических и практических основ системы пожарной безопасности ОУ); монографический метод (при изучении тенденций развития современных проблем пожарной безопасности); сравнительный анализ (при выборе оптимальных схем функционирования систем); метод моделирования (при проведении обоснования разработанных решений). Обоснованность и достоверность научных положений, выводов и рекомендаций обеспечивается четким и последовательным применением методов при решении задач исследования, совпадением полученных результатов с аналитическими. Научная новизна результатов исследования состоит в том, что обобщены данные о состоянии пожарной безопасности ОУ, установлены типичные нарушения требований норм и правил пожарной безопасности, проведено обоснование выбора элементов системы обнаружения пожара. Практическая значимость работы заключается в возможности применения полученных решений при разработке требований к пожарной безопасности (ПБ) образовательных учреждений. Дипломная работа состоит из введения, трех глав, заключения, списка литературы и приложений. В первой главе проведен анализ требований нормативных документов по пожарной безопасности, возможных причин возникновения пожара в образовательном учреждении, а также типичных нарушений требований норм и правил пожарной безопасности. Во второй главе на базе анализа осуществлен в ыбор и обоснование системы пожарной безопасности учреждения. В третьей главе предложены рекомендации по методическому и организационному обеспечению системы пожарной безопасности образовательного учреждения. Дипломная работа выполнена на __ страницах машинописного текста, содержит __ рисунков, __ таблиц, список использованных источников из __ наименований. Общий объем работы – __ страниц.

Список литературы

БИБЛИОГРАФИЯ
I. Нормативно-правовые акты
1.Закон Российской Федерации от 5 марта 1992 г. № 2446-I “О безопасности” (с последними изменениями от 26 июня 2008 г.).
2.Федеральный закон от 21 декабря 1994 г. № 69-ФЗ “О пожарной безопасности” (с последними изменениями от 22 июля 2008 г.).
3.Федеральный закон от 30 декабря 2001 г. № 196-ФЗ “О введении в действие Кодекса Российской Федерации об административных правонарушениях” (с последними изменениями от 26 апреля 2007 г.).
4.Федеральный закон от 25 июля 2002 г. N 116-ФЗ "О внесении изменений и дополнений в некоторые законодательные акты Российской Федерации в связи с совершенствованием государственного управления в области пожарной безопасности" (с последними изменениями от 4 декабря 2006 г.).
5.Федеральный закон от 8 декабря 2010 г. № 390-ФЗ"О безопасности".Кодекс Российской Федерации об административных правонарушениях от 30.12.2001 № 195-ФЗ.
6.Указ Президента Российской Федерации от 9 ноября 2001 года № 1309 “О совершенствовании государственного управления в области пожарной безопасности” (с изменениями от 8 мая 2005 г.).
7.Указ Президента Российской Федерации от 11 июля 2004 г. N 868 "Вопросы Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий" (с изменениями от 21 октября 2005 г., 21 апреля, 23 октября 2008 г.).
8.Постановление Правительства Российской Федерации от 24 июля 1995 г. № 738 “О порядке подготовки населения в области защиты от чрезвычайных ситуаций” (с изменениями от 1 февраля 2005 г.).
9.Постановление Правительства Российской Федерации от 14 января 2003 г. № 11 “О Правительственной комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности” (с изменениями от 6 мая 2003 г., 11 января 2006 г.).
10.Постановление Правительства Российской Федерации от 30 декабря 2003 г. N 794 "О единой государственной системе предупреждения и ликвидации чрезвычайных ситуаций" (с изменениями от 27 мая 2005 г., 3 октября 2006 г.).
11.Программа Министерства образования России на 2004-2007 годы от 19 мая 2003 г. № 589-30 “Безопасность образовательного учреждения”.
12.Приказ МЧС России от 18 июня 2003 года № 313 “Об утверждении Правил пожарной безопасности в Российской Федерации”.
13.Приказ Министерства образования и науки Российской Федерации от 20 мая 2004 г. № 40-51-9/02 “О мерах по развитию нормативной правовой базы в области защиты от чрезвычайных ситуаций, совершенствованию защиты работников и обучающихся образовательных учреждений от чрезвычайных ситуаций”.
14.Приказ МЧС России от 25 октября 2004 г. N 484 "Об утверждении типового паспорта безопасности территорий субъектов Российской Федерации и муниципальных образований".
15.Письмо Департамента государственной политики в образовании Министерства образования и науки Российской Федерации от 30 августа 2005 года № 03-1572 “Об обеспечении безопасности в образовательных учреждениях”.
16.Распоряжение Мэра Москвы от 30 августа 2000 г. N 923-РМ "О дополнительных мерах по обеспечению общественной и пожарной безопасности в общеобразовательных школах и дошкольных детских учреждениях".
17. Постановление Правительства Москвы от 30 марта 2004 г. N 180-ПП "О Комиссии Правительства Москвы по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности" (с изменениями от 11 апреля 2006 г., 30 октября 2007 г., 3 июня 2008 г.).
18.Приказ Департамента образования города Москвы от 10 июня 2004 г. № 294 “О введении в штатное расписание должности заместителя руководителя по обеспечению безопасности” (Приложение 1. Должностная инструкция (примерная) заместителя руководителя образовательного учреждения по обеспечению безопасности) (с изменениями от 6 октября 2005 г.).
19.Решение Коллегии Департамента образования города Москвы от 7 октября 2004 г. № 18 “О состоянии безопасности учащихся и мерах, принятых по ее обеспечению в образовательных учреждениях Департамента образования города Москвы”.
20.Приказ Департамента образования города Москвы от 23 мая 2011г. № 357 “О создании Координационного совета Департамента образования города Москвы по комплексной безопасности образовательных учреждений и организаций города Москвы”.
21.ППБ 01-03. Правила пожарной безопасности в Российской Федерации Утверждены Приказом Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий от 18 июня 2003 г. № 313
22.НПБ 88-2001. Установки пожаротушения и сигнализации. Нормы и правила проектирования – М.: Типография ФГУ ВНИИПО МЧС России, 2001 – 74 с.
23.НПБ 104-03 Системы оповещения и управления эвакуации людей при пожарах в зданиях и сооружениях – М.: Типография ФГУ ВНИИПО МЧС России, 2003 – 12 с.
24.Правила пожарной безопасности для общеобразовательных школ, профессионально-технических училищ, школ-интернатов, детских домов, дошкольных, внешкольных и других учебно-воспитательных учреждений (ППБ 101-89) – Новосибирск: Сибирское университетское издательство, 2008. – 48 с.
25.СП 5.13130.2009 Свод правил. Системы противопожарной защиты. Нормы и правила проектирования – М.: Типография ФГУ ВНИИПО МЧС России, 2009 – 104 с.
26.ТСН 31-306-2004 (МГСН 4.06-03) Общеобразовательные учреждения. г. Москва – М.: МНИИТЭП Москомархитектуры, 2004 – 76 с.
2. Научные и учебные издания
27.Балыхин Г.А. Обеспечение безопасности образовательного процесса: комплексный подход к решению проблемы. В Сб.: Комплексная безопасность в системе образования. – М.: ИФ «Образование в документах», 2007. – 248 с.
28.Безопасность образовательного пространства: Проблемы охраны здоровья и безопасности детей подростков в системе образования: Материалы регион. научно-практ. конф., 26-27 марта 2002 г. – Новосибирск: Изд-во НИПКи ПРО,2002. – 196с
29.Гаврилов М. А, Пилипенко В.Ф.. Организация мероприятий по гражданской обороне в образовательном учреждении: Учебно-практическое пособие //Серия: «Библиотечка заместителя руководителя образовательного учреждения по обеспечению безопасности». Выпуск 5 /Отв. редактор Е.С. Кушель – М.: Центр «Школьная книга», 2007. - 112 с.
30.Даниленко А.С., Пилипенко В.Ф. Обеспечение пожарной безопасности в образовательном учреждении: Учебно-практическое пособие //Серия: «Библиотечка заместителя руководителя образовательного учреждения по обеспечению безопасности». Выпуск 9. – М.: Центр «Школьная книга», 2010. – 120 с.
31.Дмитриченко А.С. Новый подход к расчету вынужденной эвакуации людей при пожарах / А.С. Дмитриченко, С.А. Соболевский, С.А. Татарников // Пожаровзрывобезопасность, №6. – 2002. – С. 25–32.
32.Кисляков П.А., Михайлов А.А. Безопасность образовательного учреждения: Учебно-методический комплекс. – Шуя: ГУЗ ВПО «ШГПУ», 2011. – 215 с.
33.Комплексная безопасность образовательного учреждения: понятийный аппарат, правовые основы, система мер обеспечения. Краткий справочник // Серия: «Библиотечка заместителя руководителя образовательного учреждения по обеспечению безопасности» /Отв. редактор Е.С. Кушель; авт.-сост. профессор В.Ф. Пилипенко. – М.: Центр «Школьная книга», 2007. – 160 с.
34.Мастрюков Б. С. Оценка уязвимости образовательных учреждений России в техногенных и природных чрезвычайных ситуациях // Безопасность жизнедеятельности №5, 2008 – С. 56-61
35.Методика оценки пожарного риска для объектов общественного назначения (проект). – М.: ВНИИПО МЧС России, 2008. – 105с.
36.Надежность технических систем и техногенный риск Электронное учебное пособие для специалистов РСЧС и студентов МЧС [Электронный ресурс]. Режим доступа – http://www.obzh.ru/obzh,76.html
37.Назаров В.И., Рыженко В.И. Охранные и пожарные системы сигнализаций. Справочник / Сост. В. И. Назаров, В. И. Рыженко. - М.: Издательство Оникс, 2007. - 32 с
38.Олишевский А. Т., Кирьянов А. В., Холодов А. С., Иванов С. А. Причины возникновения пожаров в образовательных учреждениях // Безопасность жизнедеятельности №12, 2010 – С. 46-50
39.Обеспечение комплексной безопасности в образовательном учреждении. Рабочие материалы заместителя руководителя /(сост. А.И. Котова, Е.С. Кушель, Л.Я. Олиференко, В.Ф. Пилипенко; под общ. ред. Л.Н. Антоновой, Н.В. Буркова; отв. ред. Л.Я. Олиференко, В.Ф. Пилипенко). – М.: Айрис-пресс, 2006. – 160 с
40.Петров С. В. Обеспечение безопасности образовательного учреждения – М.: Издательство «Русский журнал», 2010 – 260 с.
41.Пилипенко В.Ф. Справочник руководителя образовательного учреждения. Обеспечение комплексной безопасности образовательного учреждения. – М.: Центр «Школьная книга», 2010. – 432 с..
42.Пожары и пожарная опасность в 2011 г. Статистический сборник. Статистика пожаров и их последствий. Под общей ред. В.И. Климкина. ФГУ ВНИИПО МЧС России. – М.: 2012 – 137 с.
43.Рагимов Р.Р. Основы пожарной безопасности объектов (организаций, предприятий, учреждений): Учебное пособие. – Ростов-на-Дону: Изд-во РГУ, 2006. – 45 с.
44.Рекомендации по выбору оптимальных требований, предъявляемых надзорными органами МЧС России к техническому обеспечению пожарной безопасности образовательных учреждений – М.: ГУГПС МЧС России, 2004 – 60 с.
45.Собурь С.В. Пожарная безопасность предприятия. Курс пожарнотехнического минимума: Справочник. - 8-е изд., доп. (с изм.). - М.: Пожкнига, 2004. - 496 c.
46.Техническое регулирование пожарной безопасности в образовательных учреждениях – Барнаул, АГТУ им. Ползунова, 2010 – 20 с.
47.Файнбург Г.З. Организация охраны труда работников и безопасность обучающихся в образовательном учреждении: Основные понятия и сведения / Серия: Обеспечение безопасности образовательного учреждения. Под ред. проф. Г.З. Файнбурга. Вып. 1. - Перм. гос. техн. ун-т. - Пермь, 2004. - 80с
48.Холщевников В.В., Самошин Д.А. Эвакуация и поведение людей при пожарах. Учеб. пособие. – М.: Академия ГПС МЧС России, 2009. – 212 с
49.Анализ обстановки с пожарами и их последствиями в городе Москве за 2012 год [Электронный ресурс] Режим доступа http://www.mchs.ru/stats/detail.php?ID=783402&rc_id=moscow
50.Сайт Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий. Режим доступа: http://www.mchs.gov.ru/Stats/Pozhari
51.Новости на сайте Информационного агентства REGNUM [Электронный ресурс]. Режим доступа http://www.regnum.ru/news/

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Научно – исследовательская работа

На тему:

«Пожары и причины

их возникновения»

Власенко Олег,

Бахтигалиев Фархат

учащиеся 2 «А» класса

гимназии № 231

г. Знаменска Астраханской области

Руководитель: Мотченко Марина

Владимировна

учитель начальных классов.

г. Знаменск

Ведение

1. Теоретическая часть:

1.1. Понятие пожара.

1.2. Причины возникновения бытовых пожаров.

1.3. Требования пожарной безопасности к содержанию городских квартир.

1.4. Требования пожарной безопасности к содержанию жилья в сельской местности (дачных посёлках).

1.5. Профилактика возникновения бытовых пожаров.

1.6. Действия в случае пожара.

1.7. Действия после пожара.

Статистика причин пожаров в РФ за 2014 год (по данным МЧС).

Практическая часть:

2.1. Критерии пожарной безопасности к содержанию городских квартир.

2.2. Критерии пожарной безопасности к содержанию жилья в сельской местности (дачных посёлках).

Заключение.

Список литературы.

Введение

Еще в древней Руси, начиная с X–XI вв., по мере укрепления российской государственности, развития хозяйства, роста городов все острее вставал вопрос борьбы с пожарами, которые причиняли неизмеримый материальный ущерб, уносили тысячи жизней людей. В древних летописях содержатся описания грандиозных пожаров, сметавших целые города. По наблюдениям историков, вплоть до XV в. в России пожар в городе считался большим, если сгорало несколько тысяч дворов. О пожаре, который уничтожал сотни дворов, даже не упоминали, такое случалось часто. В 1493 г. даже московский белокаменный Кремль дважды полыхал из-за загорания многочисленных деревянных построек, вплотную подходивших к его стенам.

Принятие в XV–XVI вв. законодательных актов в области пожарной безопасности отразилось на творениях архитекторов и строителей. Строить в Москве теперь начали из кирпича и при проектировании зданий учитывали необходимые меры пожарной безопасности. Большой вклад в развитие пожарного дела внес Петр I. В период его царствования были введены новые правила пожарной безопасности, заимствованные из Голландии.

Актуальность работы связана с тем, что увеличивается количество пожаров в жилых помещениях. Бытовые пожары стали нашими неизменными «спутниками» жизни.

Сейчас в России развитию противопожарного нормирования придается большое значение. В настоящее время обеспечение пожарной безопасности зданий и сооружений различного назначения базируется на развернутой системе противопожарных норм строительного проектирования.

Но н и для кого не секрет, что пожары чаще всего происходят от беспечного отношения к огню самих людей. Каждый день средства массовой информации сообщают нам о бытовых пожарах. Причём, в основном поступает информация о пожарах в жилых домах сельской местности или дачных посёлках. Так, по сообщению МЧС, на территории Астраханской области произошло 284 пожара, в которых погибло 24 человека,14 – получили ожоги различной степень тяжести.

Пожарная охрана – это не только борьба с огнем, героизм, спасение жизней. Это не только профилактика и предупреждение возгораний, не только контроль требований и норм пожарной безопасности. Пожарная охрана – это еще и наука. Когда как не сегодня, в год, который носит официальное название «Года пожарной охраны» в системе МЧС России, вспомнить об этом.

Наука в пожарной охране всегда имела прикладное значение. Конечно, без элементарных знаний физики и химии бороться с огнем очень сложно. Но бывают ситуации, когда необходим точный ответ на вопрос, выходящий за пределы компетенции пожарно-технического минимума. Например, вот этот новый, только что изобретенный материал – токсичен ли он при пожаре? Или, если мало что осталось от сгоревшего дома, можно ли выяснить, не имелась ли в этом случае вероятность поджога?

На эти вопросы дают ответы пожарно-испытательные лаборатории. В нашем регионе такая лаборатория носит официальное название ФГБУ «Судебно-экспертное учреждение ФПС «Испытательная пожарная лаборатория» по Калининградской области. О том, чем занимается это специальное подразделение, рассказывает Диана Множина, начальник сектора судебных экспертиз.

Ч ем занимается лаборатория и как давно она функционирует?

Д.М.: Датой образования Испытательной пожарной лаборатории Управления ГПС УВД Калининградской области считается 24 июля 2002 года. В 2005 году она была преобразована в судебно-экспертное учреждение федеральной противопожарной службы.

Основная задача ИПЛ – это исследование причин и реконструкция развития пожаров. Сотрудники лаборатории лично принимают участиев работе межведомственных следственно-оперативных групп по раскрытию и расследованию преступлений, связанных с пожарами и нарушениями требований пожарной безопасности, а также взрывами, и другими происшествиями, сопряженными с пожарами. Лаборатория проводит судебные экспертизы в ходе предварительного расследования и судебного производства по делам о нарушениях требований пожарной безопасности и экспертные исследования по делам об административных правонарушениях и при проведении мероприятий по контролю (надзору) в ходе осуществления государственного пожарного надзора должностными лицами ГПН.

Также мы устанавливаем соответствие различной продукции и услуг установленным требованиям пожарной безопасности, определяем степень пожаровзрывоопасности веществ, материалов, изделий, оборудования и конструкций. Ещев соответствии спланом научно-технической деятельности МЧС России лаборатория проводит научные исследования в области пожарной безопасности.

Непосредственно сектор судебных экспертиз, который я возглавляю, занимается расследованием причин пожаров и проводит исследованияотдельных изделий, проб веществ, материалов и их обгоревших остатков в целях получения информации, необходимой для поиска очага пожара и установления его причины. Мы производим оценку степени термического поражения проб неорганических и органических материалов для установления очага пожара, производим работы по обнаружению и классификации инициаторов горения, то есть, легковоспламеняющихся или горючих жидкостей при отработке версии поджога. Также в ходе осмотра места пожара ищем признаки протекания аварийного режима работы в электросети и оборудовании при отработке электротехнической версии причины пожара.

Какое оборудование у ИПЛ на вооружении, и по какому принципу оно работает?

Д.М.: Этостационарные и переносные приборы, позволяющие решать целый ряд задач.

Легковоспламеняющиеся (ЛВЖ) или горючие жидкости (ГЖ), использованные для поджога, обнаруживают и классифицируют в «полевых условиях». На месте пожара при помощи анализатора-течеискателя можно установить места с остатками ЛВЖ или ГЖ, этот прибор показывает концентрацию их паров. При помощи анализатора с индикаторными трубками можно на месте классифицировать данные остатки по составу. Потом они изымаются и исследуются уже в лаборатории, где методом газовой хроматографии и флуоресцентной спектроскопии можно более точно установить химический состав изъятых жидкостей или их остатков и определить, что это было: дизельное топливо, бензин, керосин, нефрас, жидкость для розжига или растворитель.

При помощи метода ИК-спектроскопии при исследовании неорганических и органических веществ, изъятых с места пожара, можно сделать качественную и количественную оценку температуры и степени термического разложения материала, составить зоны термических поражений на объекте. Например, сгорел кирпичный жилой дом, и есть трудности с установлением очага пожара. В этом случае можно изъять со стен образцы кладочного раствора и определить, где была больше температура, как распространялся пожар - снизу вверх и сверху вниз. Это важно в случаях, когда неясно, где произошло возгорание – в мансарде или на первом этаже, а межэтажное перекрытие полностью выгорело. Также можно установить природу изъятого с места пожара вещества, если оно сильно обгорело. Или сделать сравнение на идентичность жидкостей, тканей, красок и тому подобное.

При помощи рентгенофазового и металлографического анализа при исследовании проводников можно установить первичное или вторичное ли было в данном случае короткое замыкание. То есть, произошло ли оно перед пожаром и стало причиной его возникновения, либо - в результате пожара, точнее, теплового воздействия. Также этими методами можно установить наличие признаков больших переходных сопротивлений и токовой перегрузки при рассмотрении версии о причине пожара в результате протекания аварийного режима работы в электропроводке и электрооборудовании.

Есть также специальные приборы, позволяющие оценить степень огнезащитной обработки различных конструкций, текстильных изделий.

Как используются исследования ИПЛ в прикладной научной деятельности?

Д.М.: Лабораторияежегодно проводит научно-исследовательские работы по плану научно-технической деятельности СЭУ ФПС на базе всей России, по следующим темам:

Во-первых, исследования пожаров, представляющих научный и практический интерес. Это такие, которые были вызваны редко встречающимися причинами. Например, всегда интересны возгорания в автомобилях, которые произошли по вине аварийного режима работы в электропроводке и электрооборудовании, либо в результате утечки горючей жидкости в моторном отсеке.

Во-вторых,в круг научно-прикладной работылаборатории входит обобщение результатов исследования пожаров в автотранспортных средствах, подготовка материалов для всероссийской электронной базы данных. Здесь проводится анализ причин пожаров в автомобилях: поджог, электро-технические причины, утечка топлива, имеется в виду разгерметизация в топливной системе, системе отработавших газов и т.п. А также градация по очагу пожара, то есть, где он был зафиксирован: в кабине или салоне, на наружных кузовных деталях, в моторном отсеке, в багажном, наличие двух и более очагов.

В-третьих, пополнение базы хроматографических и спектральных данных по потенциальным средствам поджога, речь идет о легковоспламеняющихся и горючих жидкостях. Данная база обновляется каждый год, так как на рынок поступают все новые растворители, жидкости для розжига и тому подобное.

И, в-четвертых, мониторинг средств и методов поджога, выявленных в ходе исследования пожаров. Особо отслеживается применение различного рода самодельных зажигательных устройств, это емкости с горючей смесью с замедлителем-воспламенителем в виде скрутки из ветоши, взрыво-зажигательные устройства, снабженные электронным исполнительным механизмом и прочие. К счастью, они встречаются редко.

Любопытный с научной точки зрения пожар был зафиксирован в августе прошлого года в Зеленоградском районе. На трассе у поселка Муромское загорелся автомобиль«Пежо 307». Огонь сильно повредил моторный отсек и детали, близко расположенные к нему. Специалист нашей лаборатории участвовал в осмотре места происшествия, кроме того, ему были предоставлены свечи зажигания и колпачки свечей из горевшей машины. Осмотрев повреждения, специалист пришел к выводу, что они вызваны высокой температурой и наиболее проявлены со стороны резьбы. Уплотнительное кольцо одной свечи зажигания было смещено относительно посадочного места. Специалист пришел к выводу, что очаг пожара располагался внутри моторного отсека, на головке блока двигателя, в районе места расположения наиболее поврежденной свечи. Из анализа материалов проверки по факту пожара установил, что наиболее вероятной причиной возникновения пожара стало воспламенение горючей смеси от рабочего искрения системы зажигания двигателя.

Как часто приходится проводить испытания и исследования?

Д.М.: Количество исследований и испытаний для СЭУ регламентировано государственным заданием, согласно которому сотрудниками СЭУ должно быть выполнено определенное количество судебных экспертиз, выездов на места пожаров, технических заключений, исследований объектов, изъятых с мест пожаров, испытаний на соответствие установленным требованиям пожарной безопасности продукции и услуг. Также в СЭУ организованы суточные дежурства для выездов на места пожаров, в том числе в праздничные и выходные дни.

Приведите пример недавних пожаров, в работе по которым понадобились данные испытаний лаборатории?

Д.М.: В январе прошлого года крупный пожар произошел в жилом доме в Черняховске. Огонь уничтожил 800 кв.м. кровли и мансардных помещений. Наши специалисты установили, что очаг пожара находился в центральной части чердачного помещения дома, в районе расположения кирпичного стояка с дымовыми каналами, расположенного в северной стене коридора. При помощи тепловизионной камеры сотрудники лаборатории обнаружили изгиб дымового канала. Эта конструктивная особенность препятствовала свободному выходу газов, они скапливались, что приводило к сильному перегреву кирпичной кладки канала, к которой вплотную подходили горючие элементы чердачного перекрытия.

Ранним октябрьским утром в 2014 году в поселке Авангардное Гурьевского района сгорел автомобиль «Citroen C5», огонь также повредил асфальтоукладчик, стоявший рядом. Пожарные спасли от огня 14 автомобилей, припаркованных поблизости. Специалистам МЧС требовалось подтвердить или опровергнуть версию о намеренном поджоге. Казалось бы, она очевидна: начало пятого утра, когда на улицах практически нет людей, - очень удобное время для преступления. Но исследование, проведенное специалистами лаборатории, эту версию опровергло. С места пожара был изъят фрагмент электропровода автомобиля, расположенного в месте очага пожара. В представленном образце были выявлены признаки характерные для первичного короткого замыкания.

В июле прошлого года в Мамоново горела хозпостройка из силикатного кирпича. Огонь повредил кровлю и мебель внутри постройки. На этом пожаре пострадало двое подростков. Сотрудник ИПЛ принимал участие в осмотре места происшествия. Там применялся тепловизор для измерения температуры на конструкциях, для того, чтобы установить очаг пожара. А также анализатор-течеискатель АНТ-3 для поиска и установления следов ЛВЖ или ГЖ. В полутора метрах от западной стены была обнаружена обгоревшая металлическая канистра. Анализатор-течеискатель зафиксировал внутри канистры высокую концентрацию следов углеводородов, также следы углеводородов были обнаружены и на остатках бумаги, найденных под канистрой. Эти объекты были изъяты с места пожара и доставлены в лабораторию, где в результате обследования на обгоревшей бумаге и в канистре действительно были обнаружены остатки ЛВЖ. Наиболее вероятной причиной возникновения пожара было признано возгорание легковоспламеняющейся жидкости в результате детской шалости или неосторожного обращения с огнем.

Где готовятся кадры для работы в пожарно-испытательных лабораториях МЧС?

Д.М.: В настоящее время в ИПЛ работает семь сотрудников: начальник, его заместитель, начальник сектора судебных экспертиз, начальник сектора исследовательских и испытательных работ, двое экспертов сектора судебных экспертиз и главный бухгалтер.

Учитывая множество задач, пожарно-испытательной лаборатории необходимы сотрудники разного профиля, имеющие высшее техническое или естественно-научное образование. Наши сотрудники имеют высшее образование по следующим специализациям: судебный эксперт по специальности «Судебная экспертиза», инженер по специальности «Производство строительных материалов, изделий и конструкций», инженер по специальности «Стандартизация и сертификация», инженер транспортных и технологических машин, инженер по специальности «Радиотехник», инженер-химик, юрист.

В настоящее время в СЭУ ИПЛ аттестовано три сотрудника на право производства судебных экспертиз по специализациям: «Реконструкция процесса возникновения и развития пожара», «Рентгенофазовый анализ при исследовании объектов судебной пожарно-технической экпертизы (СПТЭ)», «Молекулярная и атомная спектроскопия при исследовании объектов СПТЭ», «Обнаружение и классификация инициаторов горения при исследовании объектов СПТЭ», «Анализ нарушений нормативных требований в области пожарной безопасности, прогнозирование и экспертное исследование их последствий».

Соответственно, наши кадры готовились в различных образовательных учреждениях: Санкт-Петербургский университет ГПС МЧС России, БФУ им. Канта, Балтийский военно-морской институт, Балтийская государственная академия РФ, Пензенский государственный университет, Московский финансово-юридический университет, Белгородский государственный технологический университет им. В.Г. Шухова.

Компьютерные технологии дали возможность осуществлять прогностическое планирование протекания Неконтролируемое горение вне специального очага, приносящее материальный ущерб.

">пожара в любых условиях, учитывая множество критериев и факторов. В их число входит динамика нагрева строительных конструкций в результате воздействия пламени, просмотр возможных вариантов развития пожара при использовании систем пожаротушения и дымоудаления .

Без применения расчётных показателей, касающихся скорости распространения огня, времени эвакуации сотрудников или людей из здания, технических характеристик ограждающих систем, временных промежутков от срабатывания пожарной сигнализации , невозможно правильно разработать систему противопожарных мероприятий . Поэтому методические рекомендации, связанные с зонными и интегральными методами расчёта, сейчас активно применяются теоретиками-профессионалами в реальных условиях.

Основные объекты пожарно-технического контроля

На технологически небезопасных объектах, где в рабочем процессе используются взрыво- и горючеопасные, токсические вещества, обязательна разработка прогноза, касающаяся особенностей их распространения в рабочих зонах. В число разрабатываемых положений входят многомерное моделирование размеров зон, в которых концентрация горючих компонентов может достигнуть критической концентрации, что повлечет за собой техногенную катастрофу.

Уточнение параметров тепломассообмена на объектах, функционирование которых осуществляется в условиях, отличающихся усложненными термогазодинамическими характеристиками, также является обязательным на случай возникновения аварийных ситуаций. В их число входят предприятия, где используются диффузоры, сопла, оборудование с сублимирующим покрытием. Для тоннелей и длинных каналов также необходима расчетная программа, которая позволяет затушить Место первоначального возникновения пожара.

">очаг возгорания направленным взрывом.

Направления научно-исследовательских работ

Задачами структурных подразделений НИИ является проведение фундаментальных и прикладных работ, разработка проектно-технологических решений, которые обеспечивали бы пожарную безопасность людей, объектов, оборудования. Ввиду того, что спектр задач достаточно широк, в России сейчас действует несколько центров, которые занимаются решением вопросов по инновационным технологиям, используемых в пожарно-спасательных формированиях, осуществляют разработку мер профилактики пожаров, проводят оценку и разработку моделей робото- и пожарно-спасательной техники.

Научное обеспечение включает в себя разработку и усовершенствование технических средств, включая автомобильную технику, огнетушащие вещества, противопожарные системы и средства, которые используются при чрезвычайных ситуациях, возникших в результате техногенных катастроф и природных бедствий. Задачей учёных в данном случае является минимизация ущерба, который может быть причинён имуществу и физическим лицам при возникновении пожароопасных случаев.

Ввиду постоянного введения новых средств и оборудования в сферу народнохозяйственной деятельности, ученые осуществляют проведение экспертизы пожарной опасности продукции, в число которых входит испытание огнестойкости материалов зданий и объектов. В случае возникновения пожарного случая выполняется Изучение экспертом или группой экспертов задач, правильное решение которых требует специальных знаний и высокой профессиональной подготовки привлекаемых в качестве экспертов физических лиц.

">экспертиза места возгорания и его аналитическая оценка. Постоянный мониторинг огнестойкости и пожароопасности продукции обуславливает также необходимость модернизации измерительных приборов, которые осуществляют оценку данных параметров материалов, веществ, оборудования и приведение в соответствие метрологических параметров.

Специализация научно-исследовательских центров

Многоплановость научно-исследовательских работ обуславливает необходимость узкой специализации НИИ. Поэтому экспериментальные исследования проводятся в подразделениях, которые осуществляют оценку и совершенствование аварийно-спасательной техники, разработку мер по предотвращению и ликвидации последствий чрезвычайных ситуаций, выполняют диагностику объектов, оборудования, средств и материалов. Отдельные задачи возложены на испытательные центры, которые проводят испытание не только техники и материалов, но средств, предупреждающих и ликвидирующих пожары, включая автоматическое оборудование. Полигонные испытания оборудования, технических средств и материалов выполняются в условиях, максимально приближенных к естественным, в которых будет осуществляться их работа или использование.

Основные результаты научно-исследовательской деятельности

Методические рекомендации, касающиеся особенностей распространения пожара в различных условиях, учеными разрабатываются на основании результатов теоретических разработок с последующей проверкой в полевых условиях. Описание газотермодинамических условий пожаров учитывает такие факторы, как определение турбулентности, излучения в зависимости от оптических характеристик среды, теплофизических свойств материалов. 3D параметры, в которых возникают пожары, описываются разработанными дифференциальными уравнениями, что позволяет проверять огнестойкость различных сооружений, а также степень их повреждения после возникновения пожарного случая.

Теоретические положения являются базисом для построения полевой и интегральной моделей пожара . Далее проводится их сопоставление с результатами экспериментальных и фактических данных. Особую часть занимает описание пожаров в помещениях, имеющих сложные условия ввиду особенностей геометрии, в том числе распространение газов и продуктов горения. Расчет и определение динамики и скорости распространения продуктов горения осуществляется согласно методическим рекомендациям, учитывающим нормативные данные и базу теплофизических и пожаростойких характеристик материалов. Отдельные разделы НИР занимает применение портативных самоспасателей с фильтрующими свойствами, которые позволяют защитить людей при эвакуации с места пожара.

Таким образом, комплексное использование технических средств защиты, разработка и усовершенствование пожарного оборудования и техники, прогностическое определение факторов риска при возникновении пожарных ситуаций, ликвидация и устранение результатов пожара являются основными направлениями современной пожарной науки . Фундаментальность разработок описывается теоретическими положениями и многомерными моделями, а проверка осуществляется на экспериментальных полигонах.

1. Виды опасности

§ 1.1 Опасность естественного происхождения

§ 1.3 Антропогенные опасности

2. Пожарная опасность

§ 2.1 Исследование пожарной опасности

3. Опасные факторы пожаров

4.Расчет критерия Пекле

§ 4.1 Огнезадерживающие устройства

§ 4.1 Расчет критерия Пекле

5.Порядок определения вышедшего из аппарата вещества

§ 5.1. Характеристика аварийной ситуации.

§ 5.2. Локальное и полное определение вышедшего из аппаратов

вещества

6.Порядок определение категорий помещений

7. Классификация магистральных трубопроводов

§ 7.1 Магистральные трубопровода

§ 7.2 Основные требования к магистральным трубопроводам

8. Технологический трубопровод

§ 8.1 Прокладка трубопроводов

§ 8.2 Основные требования для трубопроводов с горючими жидкостямии газами

§8.3 Классификация технологических трубопроводов

9. Пожарная опасность процесса окраски

§ 9.1 Окраска механическим распылением

§ 9.2 Окраска окунанием и обливанием

10.Пожарная опасность технологий измельчения веществ и материалов

§ 10.1 Механическая обработка металлов

§ 10.2 Профилактика процесса измельчения твердых веществ

§ 10.3 Мероприятия в процессе измельчения веществ и материалов.

11. Пожарная опасность процессов сушки

§ 11.1 Понятие сушки

Список литературы


1. Виды опасности

Опасность – Потенциальная возможность возникновения процессов илиявлений, способных вызвать поражение людей, наносить материальный ущерб иразрушительно воздействовать на окружающую атмосферу.

Опасность различается по следующим видам:

Естественного происхождения;

Технологического происхождения;

Антропогенного происхождения.

§ 1.1Опасность естественного происхождения

Возникает при изменении погодных условий, естественного освещенияв биосфере, а также от стихийных явлений, происходящих в биосфере(землетрясения, наводнения и др.).

При землетрясении наблюдается систематический удар, происходитдеформация горных пород, возможно извержения вулканов, нагон воды (цунами),смещение горных пород, снежных масс и т.д.

Большую опасность представляет собой высокую активность солнца.Одним из природных видов опасности является грозовые разряды.

Грозовой разряд – электрический разряд в атмосфере междуразноименно заряженными частицами облака, соседними облаками и между облаком иземлей. Грозовые разряды, молнии, могут поражать здания или сооружения прямымударом. Поражение прямым ударом молнии зданий и сооружений, не имеющийэклектического соединения с землей или выполненных из токопроводящих материалов,сопровождаются полным или частичным разрушением их конструктивных элементов.

Под вторичным воздействием молнии подразумевается: появлениеразности потенциалов на конструкциях, трубопроводах, электрокабелях иэлектропроводах внутри помещений не подвергших прямому удару.

§ 1.2 Технологическая опасность

Создается в техногенных сферах. К ней относится: загазованность изапыленность воздуха, шум, вибрация, электрические поля, атмосферное давление,температура, влажность, движение воздуха, недостаточная или пониженнаяосвещенность, монотонность деятельности, тяжелый физический труд.

К травмирующим относится: электрический ток, подающие предметы свысоты, части разрушавшихся зданий и конструкций.

§ 1.3Антропогенные опасности

Связанны с деятельностью человека. Ошибки по вене человека могутпроисходить на отдыхе, в быту, в сфере производственной деятельности, вчрезвычайных ситуациях, при общении людей друг с другом, при управленииэкономики и в результате осуществления государственной деятельности.

Причины ошибок зависят от психологической структуры деятельностиоператоров (ошибки восприятия – не узнал, не обнаружил; ошибки памяти – забыл,не запомнил, не сумел восстановить; ошибки мышления – не понял, непредусмотрел, не обобщил; ошибки принятия решений – ответные реакции) и видыэтих деятельностей, от недостатка навыка и структуры внимания.


2. Пожарная опасность

Пожарная опасность - возможность возникновения и (или) развитияпожара, заключенная в каком-либо веществе, состоянии или процессе. ГОСТ12.1.033-81.

Показатели пожарной опасности – величина, количественнохарактеризующая какое-либо свойство пожарной опасности.

Пожарная опасность, любого технологического процесса, определяетсяследующим:

· наличием горючей нагрузки;

· величиной возможного избыточного давления, при сгорании газов,паров и пыли воздушной смеси в помещении или на открытых пространствах.

Пожарную опасность горючих веществ характеризуют температурамивспышки и воспламенения.

Вспышка представляет собой быстрое сгорание горючей смеси, несопровождающееся образованием сжатых газов. Температурой вспышки называют самуюнизкую (в условиях специальных испытаний) температуру горючего вещества, прикоторой над поверхностью его образуются пары и газы, способные вспыхивать ввоздухе от источника зажигания, но скорость их образования еще недостаточна дляпоследующего горения. Прекращение горения объясняется тем, что теплота,переданная горючему веществу при вспышке, недостаточна для нагрева этоговещества до температуры его воспламенения.

Жидкости по температуре вспышки паров, характеризующей пожарнуюопасность, подразделяют на горючие (ГЖ) и легковоспламеняющиеся (ЛВЖ). Горючиежидкости способны самостоятельно гореть после удаления источника зажигания, ониимеют температуру вспышки выше 61°С в закрытом тигле или 660С воткрытом тигле.

Легковоспламеняющиеся жидкости также способны самостоятельногореть после удаления источника зажигания, но имеют температуру вспышки не выше61 0С в закрытом тигле или 660С в открытом тигле.

Воспламенение - это возгорание, сопровождающееся появлениемпламени.

Температурой воспламенения называют температуру горючего вещества,при которой оно выделяет горючие пары и газы с такой скоростью, что послевоспламенения их от источника зажигания возникает устойчивое горение.

Источниками зажигания могут быть пламя, лучистая энергия, искра,разряд статического электричества, накаленная поверхность и т.п.

Процесс воспламенения представляет собой начальную стадию горения.В отличие от вспышки количество тепла при воспламенении, переданное горючемувеществу от пламени, достаточно для своевременного образования паров и газов.При этом в результате разложения и испарения горючего вещества горениепродолжается до тех пор, пока не сгорит все вещество.

§ 2.1Исследование пожарной опасности

Исследование пожарной опасности производства включает следующиеэтапы: определение пожаровзрывоопасности материалов, обращающихся впроизводстве; исследование опасности возникновения пожара; исследованиеопасности его распространения; определение возможного материального ущерба;исследование опасности для жизни людей.

Определение пожаровзрывоопасности материалов, обращающихся впроизводстве, начинают с установления основных показателей их пожарнойопасности (горючести, воспламеняемости, взрывоопасности, температуры вспышки,нижнего концентрационного предела воспламенения), а также с определения ихфизико-химических свойств, влияющих на условия возникновения и развития пожара(давления, температуры).

Сведения о пожарной опасности тех или иных материалов обычнополучают из соответствующих ГОСТов на вещества и материалы, а также изсправочников и других информационных источников. Если же данные о свойствахкакого-либо материала отсутствуют, их можно определить расчетом илиэкспериментально по стандартным методикам.

Выясняя характеристики пожаровзрывоопасных материалов,обращающихся в производстве, следует знать, как они распределяются на различныхучастках данного производства.

Исследование опасности возникновения пожара состоит в установлениивозможности одновременного появления трех компонентов: горючего материала,окислителя и источника зажигания.

В большинстве случаев на производствах окислителем являетсякислород воздуха из окружающей среды. Возможность его контакта с горючимвеществом зависит от степени герметизации технологического оборудования.Источники зажигания на производстве могут быть технологическими, естественными(например, удар молнии) либо как следствие неосторожного обращения людей согнем.

В соответствии с общей методикой анализа пожарной опасноститехнологического процесса исследованием опасности возникновения пожаранеобходимо установить: возможность образования горючей среды внутри оборудованияпри его нормальной работе, в периоды пуска и остановки; возможность образованиягорючей среды в помещениях и на открытых площадках при выходе горючихматериалов из нормально действующего оборудования; возможность поврежденияоборудования с выходом из него горючих материалов и образованием горючей средыв помещениях и на открытых площадках; возможность появления и контакта сгорючей средой источников зажигания.

Исследование опасности распространения пожара заключается вустановлении возможных размеров различных зон пожара (зоны горения, зоныизлучения, зоны задымления, зоны взрыва), в которых могут наступить тяжкиепоследствия: человеческие жертвы и материальный ущерб. Исходными пункта ми длярасчета размеров зон пожара являются, во-первых, места наиболее вероятноговозникновения пожара от технологических причин; во-вторых, места возникновенияпожара от естественного источника зажигания; наконец, места возникновенияпожара из-за неосторожного обращения с огнем.

Возможные пути распространения пожара - это, прежде всего открытообрабатываемые и открыто хранящиеся материалы, транспортные коммуникации,технологическое оборудование, растекающиеся материалы, а также взрывная волна.Зона взрыва парогазовоздушной смеси, образовавшейся внутри производственногопомещения, может быть принята равной площади помещения. Расчеты зон взрывов,возникших внутри технологического оборудования, детонационных взрывов и взрывоввзрывчатых веществ выполняют специальными методами.

Исследование опасности для жизни людей состоит в том, чтобы сучетом расположения, количества и служебных функций людей установить опасныефакторы, воздействующие на людей, оценить возможность выхода людей из опаснойзоны или оценить возможность защиты людей от действия опасных факторов пожарана рабочих местах. Следует детально проанализировать возможные причины гибелилюдей в различных зонах пожара. В зоне горения - это сгорание или перегревчеловека; в зоне излучения - также перегрев человека; в зоне задымления - удушье от недостатка кислорода, вдыхание токсичных продуктов горения, потерявидимости; в зоне взрыва - тяжкие телесные повреждения от удара взрывной волны,обрушения конструкций и разлета осколков.

Угроза для жизни людей и меры защиты от этой угрозы должны бытьисследованы независимо от количества людей, обслуживающих данное производство.Должна быть рассчитана вероятность воздействия опасных факторов пожара накаждого человека. Количество людей следует учитывать в предусматриваемых мерахзащиты: ширине эвакуационных путей, способе эвакуации, размерах защитных кабини т. п.


3. Опасные факторыпожаров

Опасный фактор пожара – фактор пожара, воздействие которогоприводит к травме, отравлению или гибели человека, а также к материальномуущербу. ГОСТ 12.1.033-81.

Требуемый уровень обеспечения пожарнойбезопасности людей должен быть не менее 0,999999предотвращениявоздействия опасных факторов в год в расчете на каждого человека, а допустимый уровень пожарной опасности длялюдей должен быть неболее 10-6 воздействия опасных факторов пожара, превышающих предельнодопустимые значения, вгод в расчете на каждого человека.

Опасными факторами, воздействующими на людей и материальныеценности, являются:

· пламя и искры;

· повышенная температура окружающей среды, предметов и т.п.;

· токсичные продукты горения и термического разложения;

· пониженная концентрация кислорода.

К вторичным проявлениям опасных факторов пожара, воздействующим налюдей и материальные ценности, относятся:

· осколки, части разрушившихся аппаратов, агрегатов, установок,конструкций;

· радиоактивные и токсичные вещества и материалы, вышедшие изразрушенных аппаратов и установок;

· электрический ток, возникший в результате выноса высокогонапряжения на токопроводящие части конструкций, аппаратов, агрегатов;

· опасные факторы взрыва по ГОСТ 12.1.010, происшедшего вследствиепожара;

· огнетушащие вещества.


4. Расчет критерия Пекле § 4.1Огнезадерживающие устройства

По производственным коммуникациям пожар и взрыв распространяются втех случаях, если внутри трубопроводов, воздуховодов, траншей, туннелей илилотков образовалась горючая среда, когда трубопроводы с этой горючей средойработают неполным сечением, если в системе заводской канализации на поверхностиводы имеется слой горючей жидкости, когда имеются горючие отложения наповерхности труб, каналов и воздуховодов, если в системе находятся газы,газовые смеси или жидкости, способные разлагаться с воспламенением подвоздействием высокой температуры или давления. Огонь в таких случаях можетраспространиться по транспортерам, элеваторам и другим транспортнымустройствам, а также через незаделанные проемы в стенах и перекрытиях.

Чтобы предотвратить распространение огня по производственным коммуникациямприменяют сухие огнепреградители, огнепреградители в виде гидравлическихзатворов, затворы из твердых измельченных материалов, автоматические задвижки изаслонки, водяные завесы, перемычки, засыпки и т. п.

Известны различные принципы и методы расчета огнепреградителей,основанные на различных предположениях о механизме теплопотерь из зоны пламении гашения пламени.

Метод Я. Б. Зельдовича в отечественной практике являетсяобщепринятым, но не распространяется на особые условия горения, когда не происходиттеплоотвода в нагретые стенки канала.


§4.1 Расчеткритерия Пекле

В теоретических работах Я. Б. Зельдовича показано, что на пределераспространения пламени в трубках малого диаметра достигается постоянство числаПекле. Последующими экспериментальными исследованиями установлено, что напределе гашения пламени величина числа Пекле колеблется в пределах 60… 80 ипримерно одинакова для всех горючих смесей и огнегасящих насадок в широкомдиапазоне изменения условий опыта. По этой закономерности легко найти величинукритического диаметра огнепреградителя.

Число Пекле применительно к данному условию выражается как

где Ре- число Пекле, на пределе гашения пламени равное 65;

а - коэффициент температуропроводности горящей смеси (м/с2);

uн - нормальная скорость распространения пламени (м/с);

d – диаметрклапана огнепреградителя (м).

Установлено, что при Пекле менее 65, горение в узком клапане не возможно.

Для критических условиях

где λ - коэффициент теплопроводности горючей смеси (Вт/м·К);

Ср – удельная теплоемкость горючей смеси (Дж/кг·К);

р - плотность горючей смеси (кг·м3).

Согласно уравнению газового состояния, pV=GRT,

где R - газовая постоянная(Дж/кг·К);

Т - температура горючей смеси (К);

р - давление горючей смеси (Па);

G - количество горючей смеси.

Подставляя (4.3) и (4.4) в (4.2) и решая уравнение относительнокритического диаметра канала, получим:

В соответствии с экспериментальными данными действительный диаметрканала огнегасящей насадки огнепреградителя должен быть взят с учетом двойногокоэффициента запаса надежности, то есть

Если насадка огнепреградителя состоит из гранулированных тел(зерен гравия, стеклянных или фарфоровых шариков, колец), приходится отвычисленного размера, канала переходить к размеру гранулы. Диаметр каналов(пор), образующихся в слое насадки из одинаковых по размеру гранул, по формеблизких к шарообразным частицам, принимают равным 0,25...0,36 величины диаметрашарика, откуда

где drp - диаметр гранулы.


5.Порядок определениявышедшего из аппарата вещества §5.1Характеристика аварийной ситуации

Технологическое оборудование и осуществляемые в немтехнологические процессы разрабатываются таким образом, чтобы при нормальныхусловиях эксплуатации опасность не возникала. Однако аварийные ситуации имеютместо. Под «аварией» понимают выход из строя, повреждение какого-либо аппарата,машины и т. п. во время работы, движения. В большинстве случаев аварии,независимо от их характера, являются следствием ошибок, допущенных на стадияхразработки, проектирования, изготовления, монтажа, эксплуатации, обслуживания иремонта производственного оборудования.

По каждой предполагаемой аварии из предварительного перечня,составленного для машины или аппарата, выясняют причину повреждения; степеньповреждения (локальное повреждение, полное разрушение); расход и длительностьутечки (в том числе общее количество вышедшего вещества); размер наружной опаснойзоны (в результате рассеивания газа, растекания и испарения жидкости); условиявоспламенения и характер первичного очага пожара.

Каждая авария связана либо с локальным повреждениемтехнологического оборудования, либо с полным разрушением аппарата.

Аварии и повреждения оборудования с горючими веществами обычноприводят к вспышкам, взрывам и пожарам на производствах.

В данной главе рассматриваются общие для всех аварий (то есть независящие от места и причины) методы определения расхода и длительности утечек,количества вышедшего вещества, динамика образования и роста размера наружнойопасной зоны.


§5.2. Локальное и полное определение вышедшего из аппаратоввещества

Локальные утечки, то есть количество вещества, выходящего наружуиз поврежденного аппарата, можно определить по формуле

где а - коэффициент расхода (допускается применять 0,7);

f - площадь отверстия, через которое происходит истечение (м2);

υ-постоянная или средняя скорость истечения вещества (м2);

р – плотность вещества при истечении (кг/м3);

τ - длительность истечения или время до ликвидации аварии(с).

Площадь поврежденного участка (отверстия) f определяют с учетомпричин и характера повреждения и конструктивных особенностей оборудования.

Длительность истечения вещества из поврежденного аппарата τскладывается из времени от начала истечения до момента обнаружения повреждения τ1, длительности операций по прекращению, утечки τ2 (закрытиезадвижек, установка заглушек и т. п.) и длительности остаточного истечения τ3, т. е.

τ=τ1+τ2+τ3 (5.2)

Следует отметить, что величина каждого отрезка времени зависит отмногих факторов. Так, время обнаружения повреждения и начала утечки τ1зависит от характера и степени повреждения, числа и расположения рабочихмест обслуживающего персонала на производственном участке и в пункте управленияпроизводством наличия стационарных средств контроля за технологическимпроцессом, чувствительности этих средств к отклонениям от норм технологическогорежима. При значительных повреждениях в большинстве случаев период обнаруженияповреждения можно принимать равным нулю.

Длительность операций по прекращению утечки τ2зависит от числа питающих трубопроводов, числа, расположения, вида привода идлительности срабатывания отключающих задвижек, а также численностиобслуживающего персонала, его подготовленности к ликвидации аварийной ситуации.При повреждении сложных технологических установок с жесткими технологическимисвязями следует учитывать время отключения всех взаимосвязанных блоков и узловустановки. Это время может измеряться часами. В простейших случаях времяотключения оборудования принимают равным 15 мин при ручных операциях и 2 минпри автоматических.

Длительность остаточного истечения τ3 зависит отобъема отсекаемого оборудования, его рабочих параметров к моменту отключения ипараметров самого истечения. Длительность этого периода определяетсягидродинамическим расчетом.

Скорость истечения вещества. Мгновенную скорость истеченияжидкости через отверстие определяют по формуле

где g - ускорение силы тяжести (9,8 м/с);

Н – приведенный напор жидкости (м).

Если истечение происходит из емкости только под давлением столбажидкости (рис. 5.1, а), то Н определяется разностью отметок от уровня жидкостидо места повреждения, т. е.

Если аппарат работает под избыточным давлением (рис. 3.1,6), то

где р - рабочее избыточное давление в аппарате (Па);

ρж - плотность жидкости при рабочей температуре(Па).

Скорость истечения газа. Истечение газа или пара под давлениемчерез отверстия сопровождается их политропическим расширением и происходит созвуковой или дозвуковой скоростью в зависимости от соотношения, давленияокружающей среды ρ0куда происходит истечение, и давления ρв аппарате. Границу между двумя режимами истечения (критическим идокритическим) обозначает критическое давление ρкр,определяемое соотношением

где k - показатель адиабаты.

Рис. 5.1. Истечение жидкости при локальном повреждении аппарата: а- при атмосферном давлении в аппарате; б - при избыточном давлении в аппарате

Критическое отношение v для одноатомных газов равно 0,489, длядвухатомных 0,528, для многоатомных 0,548.

Если ρ0<ρкр, истечение будет сдозвуковой (докритической) скоростью, определяемой по формуле

где V - удельный объем газа при условиях истечения (м3/кг);

ρ0 – атмосферное давление (Па).

Если ρ0>ρкр, истечение будетпроисходить со звуковой (критической) скоростью, определяемой по формуле

Заменяя ρV на RT (по уравнению Клапейрона), получим:

где R - газовая постоянная;

Т - температура газа в аппарате.

Последняя формула может быть упрощена. Для двухатомных газов />; длямногоатомных газов />.

При полном разрушении аппаратов общее количество, горючеговещества (газа или жидкости) определяется по формуле

Gоб=Gап+Gтр, (5.10)

где Gап – количество веществ,находящегося в аппарате к моменту разрушения;

Gтр - количество веществ, подаваемого к аппарату через трубопроводы домомента их отключения.

Количество вещества в аппарате к моменту разрушения определяетсяисходя из емкости и степени заполнения аппарата. Количество вещества,поступающего к аварийному аппарату по трубопроводам, зависит от их размеров ирасхода вещества в трубопроводах, способа обнаружения аварии и отключениятрубопроводов.

Площадь растекания жидкости при авариях аппаратов и трубопроводовзависит от количества излившейся жидкости, ее вязкости, температуры,интенсивности излива, высоты падения струи, уклона площадки или пола и другихфакторов.

Площадьрастекания горючих жидкостей F (м3) определяется по формуле

где α- угол смачивания поверхности пола разливаемойжидкостью;

g - ускорение силы тяжести (9.8 м/с);

ρ - плотность жидкости (Па);

σ- коэффициент поверхностного натяжения горючей жидкости(Па/с);

Кп –коэффициент учитывающий состояние поверхности.

Приняв для идеальной поверхности стекла Кп = 1,0,экспериментально нашли: для метлахской плитки Кп=0,9; для грунта Кп=0,9;для железобетонной плиты - 1,1; для асфальта - 1,1; для бетона (с наполнителемиз мраморной крошки) - 0,5.

Для практической оценки можно использовать значения удельнойплощади, на растекание приведенные в НПБ 105-03 «Определение категорийпомещений, зданий и наружных установок по взрывопожарной и пожарной опасности».В случае выхода горючей жидкости в производственных помещениях, площадьопределяется из условия, что один литр смесей и растворов, содержащих 70% именее по массе растворителей, разливается на площадь равную 0,5 м2.А остальные жидкости на 1 м2 пола помещения в случае выхода горючейжидкости на открытую площадку.


6. Порядок определениекатегорий помещений §6.1 «Определение категорий помещений,зданий и наружных установок по взрывопожарной и пожарной опасности» (НПБ105-03)

Настоящие нормы устанавливают методику определения категорийпомещений и зданий (или частей зданий между противопожарными стенами - пожарныхотсеков) производственного и складского назначения по взрывопожарной и пожарнойопасности в зависимости от количества и пожаровзрывоопасных свойств находящихся(обращающихся) в них веществ и материалов с учетом особенностей технологическихпроцессов размещенных в них производств, а также методику определения категорийнаружных установок производственного и складского назначения по пожарнойопасности.

Методика определения категорий помещений и зданий по взрывопожарнойи пожарной опасности должна использоваться в проектно-сметной иэксплуатационной документации на здания, помещения и наружные установки.

Категории помещений и зданий предприятий и учреждений определяютсяна стадии проектирования зданий и сооружений в соответствии с настоящиминормами и ведомственными нормами технологического проектирования, утвержденнымив установленном порядке.

Требования норм к наружным установкам должны учитываться впроектах на строительство, расширение, реконструкцию и техническоеперевооружение, при изменениях технологических процессов и при эксплуатациинаружных установок. Наряду с настоящими нормами следует также руководствоватьсяположениями ведомственных норм технологического проектирования, касающихсякатегорирования наружных установок, утвержденных в установленном порядке.

В области оценки взрывоопасности настоящие нормы выделяюткатегории взрывопожароопасных помещений и зданий, более детальная классификациякоторых по взрывоопасности и необходимые защитные мероприятия должнырегламентироваться самостоятельными нормативными документами.

Категории помещений и зданий, определенные в соответствии снастоящими нормами, следует применять для установления нормативных требованийпо обеспечению взрывопожарной и пожарной безопасности указанных помещений изданий в отношении планировки и застройки, этажности, площадей, размещенияпомещений, конструктивных решений, инженерного оборудования.

Настоящие нормы не распространяются:

o на помещения и здания для производства и хранения взрывчатыхвеществ, средств инициирования взрывчатых веществ, здания и сооружения,проектируемые по специальным нормам и правилам, утвержденным в установленномпорядке;

o на наружные установки для производства и хранения взрывчатыхвеществ, средств инициирования взрывчатых веществ, наружные установки,проектируемые по специальным нормам и правилам, утвержденным в установленномпорядке, а также на оценку уровня взрывоопасности наружных установок.

Категории взрывопожарной и пожарной опасности помещенийопределяются для наиболее неблагоприятного в отношении пожара или взрывапериода, исходя из вида находящихся в аппаратах и помещениях горючих веществ иматериалов, их количества и пожароопасных свойств, особенностей технологическихпроцессов.

Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28°С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.

Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

взрывопожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28°С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пылевоздушные или паровоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа

пожароопасные

Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива Д Негорючие вещества и материалы в холодном состоянии

При расчете значений критериев взрывопожарной опасности в качестверасчетного следует выбирать наиболее неблагоприятный вариант аварии или периоднормальной работы аппаратов, при котором во взрыве участвует наибольшееколичество веществ или материалов, наиболее опасных в отношении последствийвзрыва.

В случае если использование расчетных методов не представляетсявозможным, допускается определение значений критериев взрывопожарной опасностина основании результатов соответствующих научно-исследовательских работ, согласованныхи утвержденных в установленном порядке.

Количество поступивших в помещение веществ, которые могутобразовать взрывоопасные газовоздушные или паровоздушные смеси, определяетсяисходя из следующих предпосылок:

а) происходит расчетная авария одного из аппаратов согласно;

б) все содержимое аппарата поступает в помещение;

в) происходит одновременно утечка веществ из трубопроводов,питающих аппарат, по прямому и обратному потокам в течение времени,необходимого для отключения трубопроводов.

Расчетное время отключения трубопроводов определяется в каждомконкретном случае исходя из реальной обстановки и должно быть минимальным сучетом паспортных данных на запорные устройства, характера технологическогопроцесса и вида расчетной аварии.

Расчетное время отключения трубопроводов следует принимать равным:

времени срабатывания системы автоматики отключения трубопроводовсогласно паспортным данным установки, если вероятность отказа системыавтоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении.

Не допускается использование технических средств для отключениятрубопроводов, для которых время отключения превышает приведенные вышезначения.

Под «временем срабатывания» и «временем отключения» следуетпонимать промежуток времени от начала возможного поступления горючего веществаиз трубопровода (перфорация, разрыв, изменение номинального давления и т. п.)до полного прекращения поступления газа или жидкости в помещение.

Быстродействующие клапаны-отсекатели должны автоматическиперекрывать подачу газа или жидкости при нарушении электроснабжения.

В исключительных случаях в установленном порядке допускаетсяпревышение приведенных выше значений времени отключения трубопроводовспециальным решением соответствующих федеральных министерств и другихфедеральных органов исполнительной власти по согласованию с ГосгортехнадзоромРоссии на подконтрольных ему производствах и предприятиях и МЧС России;

г) происходит испарение с поверхности разлившейся жидкости;площадь испарения при разливе на пол определяется (при отсутствии справочныхданных) исходя из расчета, что 1 л смесей и растворов, содержащих 70 % и менее(по массе) растворителей, разливается на площади 0,5 м2, а остальныхжидкостей - на 1 м2 пола помещения;

д) происходит также испарение жидкости из емкостей,эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенныхповерхностей;

е) длительность испарения жидкости принимается равной времени ееполного испарения, но не более 3600 с.

8. Количество пыли, которое может образовать взрывоопасную смесь,определяется из следующих предпосылок:

а) расчетной аварии предшествовало пыленакопление в производственномпомещении, происходящее в условиях нормального режима работы (например,вследствие пылевыделения из негерметичного производственного оборудования);

б) в момент расчетной аварии произошла плановая (ремонтные работы)или внезапная разгерметизация одного из технологических аппаратов, за которойпоследовал аварийный выброс в помещение всей находившейся в аппарате пыли.

Свободный объем помещения определяется как разность между объемомпомещения и объемом, занимаемым технологическим оборудованием. Если свободныйобъем помещения определить невозможно, то его допускается принимать условноравным 80% геометрического объема помещения.


7. Классификациямагистральных трубопроводов §7.1Магистральные трубопровода

Магистральные трубопровода предназначенные для транспортировкитоварной нефти и нефтепродуктов (в том числе стабильного конденсата и бензина)из районов их добычи (от промыслов) производства или хранения до местпотребления (нефтебаз, перевалочных баз, пунктов налива в цистерны,нефтеналивных терминалов, отдельных промышленных предприятий). Онихарактеризуются высокой пропускной способностью, диаметром трубопровода от 219до 1400 мм и избыточным давлением от 1,2 до 10 МПа.

Магистральные трубопровода, согласно СНиП 2.05.06.85*.«Магистральные трубопровода», подразделяются на два класса:

I класс –при рабочем давлении от 2,5 до 10 МПа (свыше 25 до100 кгс/см2)включительно;

II класс –при рабочем давлении от 1,2 до 2,5 МПа(свыше 12 до 25 кгс/см2)включительно.

Магистральные нефтепроводы и нефтепродуктопроводы, по диаметрутрубопровода, подразделяются на четыре класса:

I. От 1000мм до 1200мм включительно;

II. От 500 ммдо 1000 мм включительно;

III. От 300 ммдо 500 мм включительно;

IV. От 300 мми менее.

§ 7.2Основные требования к магистральным трубопроводам

1. Магистральные трубопроводы (газо-, нефте- и нефтепродуктопроводы),следуют прокладывать подземно.

Прокладка трубопроводов по поверхности, в насыпи или на опорахдопускается только как исключение, при соответствии обоснования. При этомдолжны предусматриваться специальные мероприятия, обеспечивающие безопасностьэтих трубопроводов.

2. Прокладка трубопроводов может осуществляться одиночно илипроходить параллельно другим действующим проектным трубопроводов втехнологическом коридоре.


8. Технологическийтрубопровод §8.1Прокладка трубопроводов

Технологические трубопроводы, предназначенные для транспортировкив пределах промышленного предприятия или группы этих предприятий различныхвеществ (сырья, полуфабрикатов, реагентов, а также промежуточных или конечныхпродуктов, полученных или используемых в технологическом процессе и др.), необходимыхдля ведения технологического процесса или эксплуатации оборудования.

Трубопроводы прокладываются внутри обвалования. При прокладкетрубопроводов сквозь обвалование в месте прохода труб должна обеспечиватьсягерметичность.

Технологические трубопроводы с горючими и сжиженными горючимигазами, легковоспламеняющимися и горючими жидкостями, прокладываемые натерритории предприятия, должны быть наземными или надземными на несгораемыхопорах и эстакадах.

При наземном пересечении вне территории предприятиятехнологическими трубопроводами с горючими и сжиженными углеводородными газами,легковоспламеняющимися к горючими жидкостями железнодорожных и трамвайныхпутей, троллейбусных линий и автомобильных дорог общего назначения, подтрубопроводами должны устраиваться защитные металлические лотки, выступающие нарасстояние не менее 15 м от оси крайнего пути и 10 м от бровки земляногополотна автомобильных дорог. Трубопроводы в этих местах не должны иметьарматуры и разъемных соединений.

При подземном пересечении технологическими трубопроводами суказанными продуктами внутризаводских железнодорожных путей, автомобильныхдорог и проездов трубопроводы должны быть заложены в футляры из стальных трубдиаметром на 100-200 мм больше диаметров прокладываемых в них трубопроводов.Концы футляров должны быть уплотнены просмоленной прядью, залиты битумом ивыступать на 2 м в каждую сторону от крайнего рельса или от края проезжей частиавтодороги.

Расстояния по вертикали от железнодорожных путей и линийэлектропередач до технологических трубопроводов следует принимать до защитныхустройств этих трубопроводов.

Расстояния от зданий, сооружений и других объектов до межцеховых итехнологических трубопроводов, транспортирующие горючие и сжиженныеуглеводородные газы, легковоспламеняющиеся и горючие жидкости должны быть неменее указанных в табл2.

Под межцеховыми технологическими трубопроводами с горючимипродуктами установка оборудования не допускается. Емкости для дренированияжидкости из трубопроводов и насосы к ним должны размещаться вне габаритовэстакады.

Расстояние от трубопроводов до указанного оборудования ненормируется.

Технологические трубопроводы должны иметь несгораемуютеплоизоляцию, защищенную от разрушений.

Прокладка транзитных трубопроводов с взрывопожароопасными продуктаминад и под наружными установками, зданиями, а также через них не допускается.

Таблица 2

№ п/п Наименование объектов Расстояние до трубопроводов, м 1 От производственных, складских, вспомогательных и других зданий и сооружений, независимо от категорий пожарной опасности 510 2 От внутризаводских железнодорожных путей 5 3 От внутризаводских автомобильных дорог 1,5 4 От линий электропередач (воздушных) 1,5 высоты опоры 5 От открытых трансформаторных подстанций и распределительных устройств 10 6 От газгольдеров с горючими газами и резервуаров с ЛВЖ, ГЖ и СУГ 15 7 От любых колодцев подземных коммуникаций вне габаритов эстакады

Но допускается прокладка трубопроводов с горючими, токсичными иагрессивными веществами через бытовые, административные, электропомещения,помещения управления технологическим процессом, вентиляционные камеры и прочиеаналогичные помещения.

При технологической необходимости прокладки трубопроводов сгорючими продуктами из одного отделения цеха в другие, трубопроводы должны размещатьсяв специально выделенном для этого коридоре с ограждающими конструкциями,имеющими предел огнестойкости не менее 1 ч.

§ 8.2Основные требования для трубопроводов с горючими жидкостями и газами

1. При эксплуатации технологических трубопроводов с горючимигазами следует соблюдать «Правила устройства и безопасной эксплуатациитрубопроводов для горючих, токсичных и сжиженных газов», «Правилабезопасности во взрывоопасных и взрывопожароопасных химических и нефтехимическихпроизводствах» и требования настоящего раздела Правил.

2. В производственных цехах и на отдельных установках должна бытьвывешена схема трубопроводов с указанием расположения задвижек, которымиотключают поступление продукта при пожаре.

3. Обслуживающему персоналу необходимо знать расположениетрубопроводов, задвижек и их назначение, а также уметь четко и быстропереключать задвижки при авариях и пожарах.

4… Необходимо следить за тем, чтобы отверстия в местахпрохождения трубопроводов через глухие стены были герметично заделаны.

5. При прокладке межцеховых трубопроводов с горючими жидкостями игазами в каналах и траншеях (открытых и закрытых) надо следить за тем, чтобы вместах перехода траншей и каналов из одного помещения в другое через пожарнуюстену имелись исправные газонепроницаемые перемычки (диафрагмы) из несгораемыхматериалов.

6. Во избежание образования пробок в наружных трубопроводах, покоторым транспортируются вязкие и легкозастывающие горючие продукты (стемпературой застывания, близкой к нулю и выше), необходимо постоянноконтролировать обогрев этих трубопроводов и арматуры, а также исправность ихтеплоизоляции.

7. В закрытых лотках и туннелях, где имеются трубопроводы спожаро- и взрывоопасными веществами, в местах наиболее вероятного скопления горючихпаров и газов необходимо устанавливать газоанализаторы, автоматическисигнализирующие о создании опасных концентраций.

8. Не допускается применять заглушки для отключения трубопровода,останавливаемого на длительное время, от другого трубопровода, находящегося поддавлением. В таких случаях необходимо предусматривать съемный участоктрубопровода, а на концах действующих трубопроводов устанавливать заглушки.

9. Защитные разрывные мембраны на трубопроводах должны бытьисправными. Место размещения разрывных мембран, их материал, диаметр и толщинадолжны соответствовать данным проекта.

10. Следует постоянно контролировать исправность и чистотутеплоизоляции на горячих трубопроводах. Не допускается эксплуатировать горячиетрубопроводы с поврежденной теплоизоляцией и при попадании на нее горючихжидкостей.

11. При значительном прорыве газа или жидкости из поврежденныхтрубопроводов, а также при возникновении пожара на межцеховых коммуникацияхвызвать пожарную команду и газоспасательную службу. Одновременно должны бытьприняты меры к локализации аварии и прекращению подачи продукта в поврежденныйтрубопровод.

§8.3Классификация технологических трубопроводов

Технологические трубопроводы классифицируют по родутранспортируемого вещества, материалу труб, рабочим параметрам, степениагрессивности среды, месту расположения, категориям и группам.

По роду транспортируемого вещества технологические трубопроводыможно разделить на нефтепроводы, газопроводы, паропроводы, водопроводы,мазутопроводы, маслопроводы, бензопроводы, кислотопроводы, щелочепроводы, атакже специального назначения (трубопроводы густого и жидкого смазочногоматериала, трубопроводы с обогревом, вакуум - проводы) и др.

По материалу, из которого изготовлены трубы, различают трубопроводыстальные (из углеродистой, легированной и высоколегированной стали), из цветныхметаллов и их сплавов (медные, латунные, титановые, свинцовые, алюминиевые),чугунные, неметаллические (полиэтиленовые, винипластовые, фторопластовые,стеклянные), футерованные (резиной, полиэтиленом, фторопластом), эмалированные,биметаллические и др.

По условному давлению транспортируемого вещества трубопроводыразделяют на вакуумные, работающие при давлении ниже 0,1 МПа, низкого давления,работающие при давлении до 10 М Па, высокого давления (более 10 МПа) ибезнапорные, работающие без избыточного давления.

По температуре транспортируемого вещества трубопроводыподразделяют на холодные (температура ниже 0°С), нормальные (1 ...45 °С) игорячие (от 46 °С и выше).

По степени агрессивности транспортируемого вещества различаюттрубопроводы для неагрессивных, малоагрессивных, среднеагрессивных иагрессивных сред. Стойкость металла в коррозионных средах оценивают скоростьюпроникновения коррозии - глубиной коррозионного разрушения металла в единицувремени, мм/год. К неагрессивной и малоагрессивной средам относят вещества,вызывающие коррозию стенки трубы, скорость которой менее 0,1 мм/год,среднеагрессивной - в пределах 0,1… 0,5 мм/год и агрессивной - более 0,5мм/год.

По месторасположению трубопроводы бывают внутрицеховые,соединяющие отдельные аппараты и машины в пределах одной технологическойустановки или цеха и размещаемые внутри здания или на открытой площадке, имежцеховые, соединяющие отдельные технологические установки, аппараты, емкости,находящиеся в разных цехах.

По степени воздействия на организм человека все вредные веществаразделяют на четыре класса опасности (ГОСТ 12.1.005 - 88 «Общиесанитарно-гигиенические требования к воздуху рабочей зоны» и ГОСТ 12.1.007 -76* «Вредные вещества. Классификация и общие требования безопасности»): 1 -чрезвычайно опасные; 2 - высоко опасные; 3 - умеренно опасные; 4 - малоопасные.

По пожарной опасности (ГОСТ 12.1.004 - 91 «Пожарная безопасность.Общие требования») вещества бывают негорючие (НГ), трудногорючие (ТГ), горючие(ТВ), горючие жидкости (ГЖ), легковоспламеняющиеся жидкости (ЛВЖ), горючие газы(ГГ), взрывоопасные (ВВ).


9. Пожарная опасностьпроцесса окраски §9.1Окраска механическим распылением

В последнее время широко стал применяться способ нанесениялакокрасочного материала под высоким давлением. Нанесения его, еще называют - механическим распылением. Сущность этого способа состоит в использованииизменяющих свойств лакокрасочного материала при больших перепадов давления от10 до 20 МПа. При выходе из сопла даже холодного лакокрасочного материала,образуется мелкодисперсный факел, при этом сокращаются потери натуманообразования и уменьшается вероятность образования пожаровзрывоопаснойконцентрации.

Пожарная опасность процессов окраски обусловлена свойствамиприменяемых лакокрасочных материалов, в составе которых находится от 50 - 60% идаже 70 -80% легковоспламеняющихся растворителей. Большим количеством испаряющихсяпаров растворителей, нашедшим источник зажигания и разветвленных путейраспространения пожара.

Наиболее опасен способ распыления - сжатым воздухом, при которомобразуется пожаровзрывоопасная смесь мельчайших частиц лака и краски в воздухе.

Одной из мер предупреждения образования горючих смесей является,устройство вентиляции с целью отсоса паров от источника окраски изделий.Поэтому следует производить окраску в камерах с постоянным воздухообменом или внепосредственной близости от заборных устройств воздуховодов отсасывающих парылегковоспламеняющей жидкости. Рабочие места изолируются от окружающей средыпроизводственного помещения.

Не допускается объединения вентиляционных систем окрасочных камер(кабинок) и других помещений. Пары лакокрасочного материала, уносимыевентиляционной системой, улавливаются при помощи фильтров или распыленной воды,очищаемых ловушек.

Вентиляционная система должна иметь автоматическую блокировку,обеспечивающая прекращение краски при остановки вентилятора.

Количество воздуха, которое необходимо пропускать через окрасочнуюкамеру для обеспечения безопасных условий, определяется формулой

где F – сечения открытых проемов камеры;

U – скоростьдвижения воздуха в проемах камеры (1 м/с, для токсичных веществ 1,3м/с);

α – коэффициент учитывающий подсос через неплотности кабины(принимают от 1,1 до 1,2).

При окраске больших изделий, вагонов, локомотивов, вентиляцияпредусматривается по принципу вентилирования ограничения участка изделия,который в данный момент окрашивается. При этом изделие перемещаетсяотносительно вентиляционной установки или вентиляционная установка перемещаетсяотносительно изделия. Скорость отсасывающего воздуха должна быть не менее 1м/с.

В камерах предусматриваются газоанализаторы, которые блокируются сработой вентилятора. Другим направлением по уменьшению пожарной опасностикраски являются, замена легковоспламеняющих и горючих растворителей,пленкообразоватьелями и лаков на пожаробезопасные.

Специфическими источниками зажигания в этих процессах являются,искры удара (механический) и самовозгорание отходов, в состав которых входит:нитролаки, льняное масло, эмаль, а также самовозгорание отложений лакокрасочныхматериалов в воздуховодов. Поэтому, для профилактических целей предусматривают:

Удаления из помещения лакокрасочных материалов;

Очищения воздуховодов от отложений лакокрасочных материалов;

Контроль за исправностью оборудования, отсутствия искр удара итрения при работе вентиляторов и при пользовании инструментов.

Быстрому распространению пожаров способствует:

Большое количество лакокрасочных материалов;

Горючесть самих окрашенных изделий, не зависимо от материала;

Вентиляционная система, по которым пламя может распространяться всмежные цеха и этажи.

По этому мерами профилактики предусматривается:

1. ограничения количества горючих веществ и материалов, находящихсянепосредственно в окрасочных цехах;

2. прокладка вентиляционных воздуховодов по кратчайшему пути непосредственнов наружу или в очистительное устройство;

3. устройство огнепреградителей и огнезадерживающих заслонок,особенно на ответвлениях от кабины и агрегатов;

4. очистка кабины и камер от отходов, а воздуховодов от отложенийлакокрасочных материалов.

§9.2Окраска окунанием и обливанием

Этот способ находит применения при конвейерной технологии, когдаокрашенные изделия подаются на сушку. Изделия окунают в ванну с помощьюподъемных устройств. Если объем ванны превышает 0,5 м3, оборудуютспециальные окрасочные камеры с вытяжной вентиляцией.

Способ обливания мало отличается от окунания. Струйное обливания иобливания с последующей выдержкой в парах растворителей, заключается в том что,изделие обильно обливают краской и направляют в камеру или туннель, в которомнаходятся пары растворителя. Здесь лишняя краска с изделия стекает, аоставшаяся равномерно покрывает ее поверхность. Этот способ имеет рядпреимуществ по сравнению с другими:

1. сокращается расходы лакокрасочного материала;

2. имеется возможность применять конвейеры;

3. создаются хорошие условия для автоматизации процессора;

4. резко уменьшается количество краски в системе, по сравнению сокунанием, что способствует уменьшению масштабов возможного пожара.

В мебельной промышленности широко используется способ лаконалива,осуществляющий с помощью лаконаливных машин. Основным элементом этих машинявляется лаконаливная головка, из нее лак вытекает в виде бесконечной тонкойширокой пленки, которая ложится на движущийся по конвейеру окрашиваемыймебельный материал. Образующиеся пары отсасываются, а материал идет на сушку.

Горючая среда, при окраске окунанием и обливанием, образуется вокрасочных агрегатах, вентиляционных воздуховодах, в емкостях с лакокрасочнымматериалом и производственном помещении. С изделий обильно стекает краска вприемники, происходит обильное испарение растворителей с поверхности ванн иизделий, как в момент окраски, так и при следовании изделий на сушку.

При нарушении работы вентиляционной системы, могут образоватьсяпожаровзрывоопасные смеси. Пожар распространяется по лакокрасочным материаламнаходящимися в жалобах, емкостях, сборниках, коммуникациях. Для предотвращенияобразования горючей среды, необходим хороший воздухообмен со скоростью движениявоздуха от 1 до 1,5 м/с.

Предусматривается – автоматическая блокировка, исключая подачукраски при остановке вентиляционной системы; автоматический контроль исигнализация о появлении опасных концентраций; автоматическое регулированиеконцентрационных паров в окрасочных камерах.


10. Пожарная опасностьтехнологий измельчения веществ и материалов §10.1Механическая обработка металлов

Процессы механической обработки металла, древесины, пластмасс,минералов и других твердых веществ и материалов, всегда связаны сиспользованием горючих жидкостей, наличием взрывоопасных концентраций паровлегковоспламеняющихся и горючих жидкостях, пожаро- и взрывоопасной пылью. Этипроцессы связанны с повышением температуры, что может в свою очередь вызватьпожар или взрыв.

Для обработки металла используют токарные, сверлильные,шлифовальные, зуборезные и сварочные работы с применением соответствующегооборудования. Механическая обработка металлов, связанна с применениемзначительных сил, на преодоление сил трения, что в свою очередь вызывает нагревматериала.

Основным фактором влияющим на степень разогрева материала,являются скорость резанья, подачи режущего инструмента, качество заточкиинструмента и механическое и технологическое свойство материала. При нормальныхусловиях тепло отводится в окружающую среду, и оно не представляет опасности. Сповышением скорости резанья и подачи инструмента, количество теплотыувеличивается и исходный материал (обрабатываемый) может стать источником зажигания.

Горючим материалом в цехах холодной обработки металла, в основномявляются масла, применяемые в системах смазки станков, для охлаждения резцов иинструментов. Металл, поступающий на склад, в целях защиты от коррозий, всегдапокрывается слоем смазки. Эта смазка вместе с отходами попадает натранспортерную ленту, транспортеры загрязняются и создаются условия длявозникновения и распространения пожара.

Особую пожарную опасность представляет обработка Mg, Ti, Zr и их сплавов. Магниеваяпыль загорается даже от искры, процесс горения проходит в виде взрыва. Пыль истружка магния и его сплавов при наличии небольшого количества маселсамовозгораются. Еще более опасно магниевая пыль наэлектризовавшись можетвоспламениться, что представляет большую опасность в системах, на которых онаоседает (воздуховоды, аспирационные установки).

Главное требование пожарной безопасности, при процессах обработкиметаллов, сводится к следующему:

1. соблюдение установленного режима обработки (скорость резания,пиления, шлифования, величина подачи);

2. недопущения для работы тупого инструмента и станков,неприспособленных для этих целей;

3. соблюдения исправности и эффективности работы систем охлаждениястанков (систему подачи воды, блокируют с системой пуска станка);

4. соблюдением исправности масленой системы, выход масла в наружудолжен быть исключен;

5. регулярная очистка транспортера от масленых загрязнений, сиспользованием технических моющих средств;

6. электрическое оборудование станков должно быть в соответствииисполнениям;

7. для сплавов используются огнетушащие составы марки ПС-1, ПС-2.

§10.2Профилактика процесса измельчения твердых веществ

Твердые горючие вещества (зерно, уголь, зерно, краска, сера)подвергают измельчению, дроблению и размолу. Измельчение делят на дробление:крупное, среднее, мелкое, тонкое и сверхтонкое. Крупное дроблениеосуществляется в щетковых и конусных дробилках. Для среднего и мелкогодробления используют валковые молотковые, отражательные дробилки. Тонкоеизмельчение производится в шаровых мельницах, сверхтонкое в вибрационных колоидныхмельницах.

Процессы измельчения горючих веществ, представляет собой,повышенную опасность, поскольку сопровождается увеличениями поверхноститвердого вещества и его реакционной способности. В этом процессе происходитобразование взрывоопасной пыли, создаются две горючие системы: твердоевещество, воздух и аэрозоль. Наибольшую опасность из них представляет, горючаяаэровзвесь.

Пыль оседает на оборудование, элементов здания и образует легкогорючуюсреду, аэрогель. Опасность аэрогеля состоит в том, что он способен легкопереходить в аэрозоль, который взрывоопасен.

Источники зажигания для твердых веществ: искры, возникшие врезультате - попадания в машины камней и металлов, вместе с сырьем; при удареметаллических частей машины друг от друга; при поломке машины; при разрядкестатического электричества, а также нагретые тела.

§10.3Мероприятия в процессе измельчения веществ и материалов.

1. В тех случаях, когда герметизация машин, производящихдробление, размол, транспортирование и другие подобные операции, связанные сполучением измельченной продукции, не исключает выхода пыли в помещение, меставыделения пыли должны быть оборудованы пылесосами. Эвакуировать машины снеисправными пылесосами не разрешается.

2. Люки и дверцы, расположенные на размольно-дробительныхагрегатах и трубопроводах с пылью, должны быть плотно закрыты. Загрузкаизмельченного горючего вещества в машины не должна превышать предельной массы,указанной в паспорте завода-изготовителя.

3. Во избежание поломок аппаратов и появления искр при ударахнельзя допускать попадания в дробилки и мельницы вместе с горючим сырьемметаллических предметов и камней.

При наличии магнитных улавливателей необходимо следить за ихисправностью и эффективностью действия.

4. Машины для измельчения и смешения измельченных веществ,оборудованные системой подачи инертного газа, должны иметь исправнуюблокировку, позволяющую производить пуск машин только после подачи инертного газаи отключать подачу газа только после остановки машины.

6. Произвести заземление машин для исключения образованиястатического электричества.

5. Чтобы уменьшить возможность скопления в машинах и аппаратахосевшей взрывоопасной или самовозгорающейся пыли, нельзя допускать наличиятупиковых отростков, отключенных линий, конденсации паров воды во избежаниеувлажнения стенок, образования зависаний пыли в бункерной части машин иаппаратов.

6. Очистку машин и уборку помещений от пыли необходимо производитьв установленные сроки осторожно, без взвихрения пыли.

7. При тушении очагов горящей пыли во избежание ее взвихрения ивзрыва необходимо использовать распыленную воду со смачивателями.


11. Пожарнаяопасность процессов сушки §11.1Понятие сушки

Сушкой называют тепловой процесс удаление влаги из твердыхматериалов, путем его испарения и отвода образующихся паров.

Влагу можно удалить путем отстаивания и с использованиемцентрифуг, но более полное удаление влаги, достигается при тепловой сушки.Удаления влаги при сушки сводится к перемещению ее из объема материала кповерхности и перемещение ее с поверхности материала в окружающую среду.

§11.2 Процессы сушки

Главные требования при сушки материалов:

1. Для каждой сушилки должны быть установлены предельно допустимыенорма загрузки высушиваемого материала и температурный режим работы.

При эксплуатации сушилок необходимо постоянно контролироватьсоблюдение температурного режима процесса сушки и исправности приборов контроляи сигнализации.

2. Сушилки для сушки термически нестойких материалов и материалов,склонных к самовозгоранию, должны иметь устройства автоматическогорегулирования температуры.

3. При сушке веществ и материалов надо следить за тем, чтобывентиляционная система сушилки постоянно обеспечивала взрывобезопаснуюконцентрацию паров и газов в сушильном объеме камеры.

Для контроля концентрации паров горючих растворителей в сушилкедолжны быть установлены автоматические газоанализаторы, обеспечивающие подачусигнала при достижении концентрации, равной 20% концентрации нижнего пределавоспламенения. В случае отсутствия серийно выпускаемых газоанализаторов дляпаров данного растворителя необходимо предусмотреть лабораторный контрольконцентрации паров в воздухе, периодически отбирая пробы на анализ.

4. В сушилках, работающих с рециркуляцией воздуха, необходимоконтролировать допустимую величину возврата (рециркуляции) воздуха, чтобы всушильной камере не могла создаваться концентрация паров и газов, превышающая20% концентрации их нижнего предела воспламенения. Шиберы на выкидной линиидолжны быть оборудованы ограничителями.

5. Сушилки непрерывного действия допускаются к работе при наличииисправно действующей системы блокировки, обеспечивающей автоматическое отключениеобогрева (калориферов, излучателей, электродов и пр.) при внезапной остановкеконвейера или вытяжного вентилятора.

6. При эксплуатации сушилок, в которых высушиваемый материалнаходится в движущемся или взвешенном состоянии, необходимо следить заисправностью и своевременной проверкой системы заземления. Если заземлениекамер, трубопроводов и циклонов неэффективно вследствие отложения на стенахнеэлектропроводной пыли, следует принять сушильный агент, обладающийэлектропроводностью, или использовать для сушки инертные газы.

7. Во взрывоопасных сушилках надо следить за тем, чтобывентиляторы были взрывобезопасными, а притворы дверей выполнялись из металлов,не образующих искр при ударах.

8. Во избежание распространения пожара необходимо следить за наличиеми исправностью автоматически закрывающихся задвижек на отсасывающих линиях илиниях подачи свежего воздуха.

9. Необходимо регулярно следить за качеством очистки сушильныхкамер, подогревателей, воздуховодов, фильтров, циклонов и транспортных приспособленийот пыли и других отложений. Сроки очистки должны быть указаны впроизводственной инструкции.

10. Следить за состоянием автоматических систем пожаротушения и вустановленные сроки проверять их исправность. При загорании высушиваемогоматериала система вентиляции и транспортирующие устройства должны бытьнемедленно остановлены. Сушилки следует оборудовать приспособлениями дляпаротушения или водяной дренчерной системой.

11. Запрещается хранить в производственных помещениях сгораемыематериалы в количестве, превышающем сменную норму; оставлять после окончанияработы неубранные масла, олифу, лаки, клеи и другие горючие материалы ипредметы.

12. Здания (помещения) сушилок должны быть несгораемыми. Прирасположении нагревательных батарей в нижней части сушильных камер паровыетрубы должны иметь гладкую поверхность и перекрываться сверху сеткой.Периодически, но не реже одного раза в неделю необходимо производить очисткукамер и мест расположения батарей от щепы, мусора и т.п.


Список литературы

1. ГОСТ 12.1.004-91Пожарная безопасность. Общие требования. М.:Издательство стандартов, 1992. (с изменениями от 21 октября 1993 г.)

2. Правила пожарной безопасности при эксплуатации предприятийхимической промышленности. ППБО-103-79. ВНЭ 5-79. М.: Минхимпром, 1967.

3. Ведомственные указания по противопожарному проектированиюпредприятий, зданий и сооружений нефтеперерабатывающей и нефтехимическойпромышленности. ВУПП-88. М., 1989.

4. ГОСТ Р 12.3.047-98 Пожарная безопасность технологическихпроцессов. М.: Издательство стандартов, 1998.

6. Правила безопасности для вспомогательных цехов горнодобывающихпредприятий. ПБ 06-227-98, М.,1998.

7. СНиП 2.01.02-85*. «Противопожарные нормы». М.: ГОССТРОЙ СССР, 1991.

8. Баратов А.Н. Пожарная профилактика технологических процессовпроизводств. М.: ВИПТШ МВД СССР,1985.

9. Шевандин М.А., Ботоев Б.Б., Рубцов Б.Н.Безопасность в чрезвычайныхситуациях. Гражданская оборона. М.: Маршрут, 2004. – 356с.

10. Сибаров Ю.Г. Охрана труда на железнодорожном транспорте. М.:Транспорт, 1981.С. 23-25

Похожие публикации