Единицы измерения радиации. Единицы измерения проникающей радиации

Слово «радиация» у большинства населения ассоциируется с техногенными катастрофами, такими как или атомными бомбардировками городов Хиросима и Нагасаки. Если коротко передать ощущения, которые возникают у большинства людей, получается, что радиация - это зло. Хотя на самом деле она существовала на нашей планете задолго до зарождения жизни и продолжит своё существование даже после гибели планеты.

Норма радиации для человека в мкР/ч постоянно отслеживается специальными службами в разных сферах его жизнедеятельности. И это та угроза, с которой сложно бороться, а в случае превышения радиационного фона последствия могут быть самыми плачевными. Чем грозит и какова норма радиации в мкР/ч для человека?

Сама природа - естественный источник радиации

В создании естественного участвует много факторов: это и солнечные лучи, и радионуклиды. Она присутствует буквально во всем, что окружает человека. Это и вода, пища и воздух. Просто его уровень имеет разные величины: большую или меньшую. Но самая большая опасность, которую таит в себе радиация, - это то, что она незаметно воздействует на организм.

Человеческие органы чувств не дают практически никаких сигналов об опасности. Она просто тихо делает своё дело, вызывая патологию функционирования организма, и даже доводит до летального исхода.

Чем и как ведётся измерение радиации

Величин измерения множество, и они будут интересны, скорее, узким специалистам, поэтому необходимо упростить задачу и назвать только самые основные для бытового применения.

Излучение, воздействующее на любой живой организм, называют Рассчитать её довольно просто: поглощённая организмом доза в пересчёте на вес тела умножается на коэффициент повреждения. Полученное число - единица измерения в зивертах, или сокращённо Зв. Естественный фон в 0,7 мЗв в час соответствует приблизительно 70 рентгенам в час, или сокращённо 70 мкР/ч. Зная эту величину, легко определить, является ли она опасной для человека.

Нормой радиации для человека мкР/ч являются показатели 20-50. Следовательно, такой радиационный фон является завышенным. Но необходимо осветить ещё один момент для понимания - влияние времени. То есть если сразу уйти из такой неблагоприятной зоны, а не находиться там сутками, то облучение не превысит допустимые нормы радиации для человека.

Производится специальными приборами - дозиметрами. Их принято различать на профессиональные и бытовые. Вся разница в величине погрешности, которую они могут допускать. У профессиональных она должна составлять не более 7%, а у бытовых она может быть свыше 25%.

Места обязательного мониторинга

Если опустить необходимость замеров на военных объектах, атомных станциях и самолётах, то получается - замеры происходят во многих сферах жизнедеятельности человека. И это разумно, особенно с учётом появления новых источников радиационного излучения. Замеры проводятся в лесах, горных районах, жилых домах и промышленных объектах. Не будет лишним провести такую операцию и при приобретении какой-нибудь недвижимости. Начиная застройку и при сдаче объекта в эксплуатацию также проводят такие процедуры.

Про детские сады, больницы, школы и говорить не стоит. Подводя итог, можно говорить о том, что практически во всех сферах жизни проводится контроль нормы радиации и излучения для человека (мкР/ч).

Чудовищная сила ионизации

Электроны могут присоединяться к оболочке атома или, наоборот, отрываться. Этот процесс называется ионизацией и интересен тем, что может до неузнаваемости изменить структуру атома. Измененный, он, в свою очередь, меняет молекулу. Примерно так вкратце и происходит влияние радиации на клетки живого организма. Это приводит к патологиям или попросту к болезням.

Когда источники ионизирующего излучения превышают норму, такую территорию принято считать заражённой. Организация Объединённых Наций даёт оценку о норме радиации для человека (в мкР/ч или зивертах), и она составляет 0,22 мкЗв, или 20 микрорентген в час.

У людей может возникнуть вопрос: а передаётся ли лучевая болезнь, например, через рукопожатие. Сразу следует всех успокоить. Общаться с облучёнными людьми можно, и для этого совсем не обязательно надевать противогаз. Опасность скрыта в предметах, излучающих радиацию, - вот их как раз трогать нельзя.

Можно ли получить дозу радиации в собственной квартире?

Принято считать свой дом самым безопасным местом на земле. Отчасти это так, но существуют угрожающие факторы и там. Необходимо вкратце коснуться вопроса о норме радиации для человека и дозах, которые он может получить, даже находясь в квартире в кругу семьи.

Принято считать, что современная техника - это источник опасности, но в большинстве своём люди ошибаются. Опасность может притаиться не там, где её ожидают. Как пример можно взять старинные дорогие вещи. Часы могут значительно сократить жизнь. Особенно если в них в качестве светомассы используются соли радия-226.

Это касается и наручных часов со светящимся циферблатом. Если их создали в 50-е годы и они армейские, то можно гарантированно считать их радиоактивными. При контакте с телом они не представляют опасности, но иногда пытливые умы могут разобрать их, и вот тут их поджидает неприятный сюрприз.

Любителям стеклянной посуды стоит знать, что иногда в краске присутствует диоксид урана. Современная посуда с таким покрытием менее опасна. Любители старинных вещей могут притянуть в свою коллекцию много «интересных» предметов с использованием светомассы постоянного действия, поэтому необходимо поостеречься.

Оценка допустимой нормы в мирное и военное время

Норма радиации для человека в мкР/ч и дозы безопасного облучения рассчитаны с условиями политической жизни государства во время мира или войны. У разных государств - свои цифры.

Верхнее допустимое значение безопасного радиоактивного фона в Бразилии вообще составляет 100 мкР/ч, а в России эта цифра колеблется в районе 50-60 мкР/ч. Определяются нормы загрязнения радиоактивными веществами. Норма не должна превышать 30 мкР/ч.

В условиях ведения боевых действий загрязнённой считается территория с показаниями 0,5 рентген в час. Какая норма радиации для человека в мкр/ч в условиях войны прописана Министерством Обороны? Солдат остаётся в строю, если в расчёте на первые сутки облучение не превысило 50 рад, а за год 300 рад.

Опасны облучения в малых и больших дозах радиации. В первом случае может дойти до онкологии и генетических болезней, особое коварство которых проявится через несколько лет. Во втором случае - человек получает сразу острую лучевую болезнь. Она имеет 4 степени в зависимости от полученной в ходе нахождения в неблагоприятной зоне.

Крайне тяжёлая степень 600-1000 рад. У людей с ярко выраженными признаками присутствует апатия, вялость, от еды они отказываются. Могут наблюдаться кровотечения, и любая инфекция переносится крайне тяжело по причине ослабления иммунитета.

Влияние деятельности человека на радиационный фон планеты Земля

В древние времена деятельность человека не могла повлиять на радиационный фон Земли. При сжигании угля выделяются калий, уран-238 и торий. Благодаря этому археологи и находят древние поселения людей.

Но с развитием промышленности, человек перестал быть безобидным и незаметным для планеты. Он стал угрозой для её существования. Ядерное оружие способно вызвать непоправимые последствия в виде изменения климата. Погибнет всё живое, если человечество не остановится.

Исследование степени заражённости территории возле нефтепромыслов показало, что она возрастает. История знает крупные техногенные катастрофы (Фукусима, Чернобыль), которые нанесли непоправимый урон окружающей среде. И это только начало. Весь ужас трагедии, связанный со стронцием, ещё проявит себя. А на данный момент йод-131 и стронций-90, попадая в организм с едой, вызывают внутреннее облучение.

Эти печально знаменитые аварии коснулись всех - хоть и незаметно, но в этом и есть особое коварство радиации. Какая допустимая норма для человека в мкр/ч, в разных странах трактуется по-разному, в силу множества различных факторов. Но эти показатели могут очень легко измениться. За примерами далеко ходить не надо. Достаточно посмотреть на опыт Республики Беларусь.

Продукты, снижающие уровень радиации в организме

Сама природа позаботилась о том, чтобы человек естественным путем через пищу мог уменьшить воздействие радиации, это такие овощи, как лук, чеснок, морковь, все то, чем богаты огороды. Главное, чтобы они были «натуральными», а не ускоренного выращивания. Морская капуста, грецкие орехи компенсируют нехватку йода в организме человека. Хрен и горчица также не будут лишними продуктами на столе.

Существует ошибочное мнение, что крепкие спиртные напитки выводят радиацию из организма - это не так. Водка, красное вино практически не влияют на ее количество. Единственной оговоркой можно уточнить, что красное вино в небольших количествах можно применять в качестве профилактики, но не более того.

Заключение

Излучение было, есть и будет. Норма радиации для человека в мкР/ч прописана и подтверждена многими исследованиями. К сожалению, в последнее время человечество все чаще сталкивается с проблемами, связанными с радиоактивным загрязнением. Поэтому именно от людей зависит, какие последствия это все будет иметь в будущем.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрозиверт [мкЗв] = 0,001 миллизиверт [мЗв]

Исходная величина

Преобразованная величина

рад миллирад джоуль на килограмм джоуль на грамм джоуль на сантиграмм джоуль на миллиграмм грей эксагрей петагрей терагрей гигагрей мегагрей килогрей гектогрей декагрей децигрей сантигрей миллигрей микрогрей наногрей пикогрей фемтогрей аттогрей зиверт миллизиверт микрозиверт тошнота и рвота слабость головная боль усталость повышение температуры инфекции диарея лейкопения пурпура кровотечения потеря волосяного покрова головокружение и дезориентация гипертензия нарушение баланса электролитов смертность

Как правильно ухаживать за очками и светофильтрами

Избранная статья

Подробнее о поглощенной дозе радиации

Общие сведения

Излучение бывает ионизирующим и неионизирующим. В этой статье речь пойдет о первом типе излучения, о его использовании людьми, и о вреде, который оно приносит здоровью. Поглощенная доза отличается от экспозиционной дозы тем, что измеряется общее количество энергии, поглощенное организмом или веществом, а не мера ионизации воздуха в результате наличия ионизирующего излучения в окружающей среде.

Значения поглощенной и экспозиционной дозы похожи для материалов и тканей, которые хорошо поглощают радиацию, но не все материалы - такие, поэтому часто поглощенная и экспозиционная дозы радиации отличаются, так как способность предмета или тела поглощать радиацию зависит от материала, из которого они состоят. Так, например, лист свинца поглощает гамма-излучение значительно лучше, чем лист алюминия той же толщины.

Единицы для измерения поглощенной дозы облучения

Одна из самых широко используемых единиц измерения поглощенной дозы радиации - грей . Один грей (Гр) - доза радиации при поглощении одним килограммом материи одного джоуля энергии. Это очень большое количество радиации, намного больше, чем обычно получает человек во время облучения. От 10 до 20 Гр - смертельная доза для взрослого человека. Поэтому часто используют десятые (децигреи, 0,1 Гр), сотые (сантигреи, 0,01 Гр) и тысячные (миллигреи, 0,001 Гр) грея, наряду с более маленькими единицами. Один Гр - это 100 рад, то есть один рад равен сантигрею. Несмотря на то, что рад - устаревшая единица, она часто применяется и сейчас.

Количество радиации, которое поглощает тело, не всегда определяет количество вреда, наносимого телу ионизирующим излучением. Чтобы определить вред для организма, часто используют единицы эквивалентной дозы.

Эквивалентная доза облучения

Единицы для измерения поглощенной дозы облучения часто используют в научной литературе, но большинство неспециалистов плохо с ними знакомы. В СМИ чаще используют единицы эквивалентной дозы облучения. С их помощью легко объяснить, как радиация влияет на организм в целом и на ткани в частности. Единицы эквивалентной дозы облучения помогают составить более полную картину о вреде радиации, так как при их вычислении учитывают степень повреждения, наносимого каждым видом ионизирующего излучения.

Вред, наносимый тканям и органам тела разными типами ионизирующего излучения, вычисляют с помощью величины относительной биологической эффективности ионизирующих излучений . Если на два одинаковых тела действует излучение одного типа с одинаковой интенсивностью, то относительная эффективность и эквивалентная доза - равны. Если же типы радиационного излучения разные, то и эти две величины - разные. Например, вред, наносимый бета-, гамма- или рентгеновскими лучами - в 20 раз слабее, чем вред от облучения альфа-частицами. Стоит заметить, что альфа-лучи приносят вред организму только в том случае, если источник излучения попал внутрь организма. За пределами организма они практически неопасны, так как энергии альфа-лучей не хватает даже для преодоления верхнего слоя кожи.

Эквивалентную дозу облучения вычисляют, умножив поглощенную дозу облучения на коэффициент биологической эффективности радиоактивных частиц, для каждого вида радиации. В примере, приведенном выше, этот коэффициент для бета-, гамма- и рентгеновских лучей равен единице, а для альфа-лучей - двадцати. Пример единиц эквивалентной дозы радиации - банановый эквивалент и зиверты.

Зиверты

В зивертах измеряют количество энергии, поглощенной телом или тканями определенной массы во время радиационного излучения. Для описания вреда, который радиация наносит людям и животным, также обычно используют зиверты. Например, смертельная доза радиации для людей - 4 зиверта. Человека при такой дозе радиации иногда можно спасти, но только если немедленно начать лечение. При 8 зивертах смерть неизбежна, даже с лечением. Обычно люди получают намного меньшие дозы, поэтому часто используют миллизиверты и микрозиверты. 1 миллизиверт равен 0,001 зиверта, а 1 микрозиверт - 0,000001 зиверта.

Банановый эквивалент

В банановом эквиваленте измеряет дозу радиации, которую человек получает, когда съедает один банан. Эту дозу также можно выразить в зивертах - один банановый эквивалент равен 0,1 микрозиверта. Бананы используют потому, что в них содержится радиоактивный изотоп калия, калий-40. Этот изотоп встречается и в некоторых других продуктах. Некоторые примеры измерений в банановом эквиваленте: рентген у стоматолога эквивалентен 500 бананам; маммограмма - 4000 бананам, а смертельная доза радиации - 80 миллионам бананам.

Не все согласны с использованием бананового эквивалента, так как радиация разных изотопов по-разному влияет на организм, поэтому сравнивать эффект калия-40 с другими изотопами - не совсем правильно. Также, количество калия-40 регулируется организмом, поэтому когда его количество в организме увеличивается, например, после того, как человек съел несколько бананов, организм выводит лишний калий-40, чтобы поддерживать баланс количества калия-40 в организме постоянным.

Эффективная доза

Описанные выше единицы используют, чтобы определить количество радиации, которое подействовало не на организм в целом, а на определенный орган. При облучении разных органов риск заболевания раком - разный, даже если поглощенная доза облучения - одинакова. Поэтому, чтобы узнать вред, нанесенный организму в целом, если облучен только определенный орган, используют эффективную дозу радиации.

Эффективную дозу находят, умножая поглощенную дозу облучения на коэффициент тяжести радиационного облучения для этого органа или ткани. Исследователи, которые разработали систему вычисления эффективной дозы, использовали информацию не только о вероятности рака при облучении, но и о том, как укоротится и ухудшится жизнь пациента из-за облучения и сопутствующего ему рака.

Как и эквивалентную дозу, эффективную дозу также измеряют в зивертах. Важно помнить, что когда говорят о радиации, измеряемой в зивертах, речь может идти либо об эффективной, либо об эквивалентной дозе. Иногда это понятно из контекста, но не всегда. Если о зивертах упоминают в СМИ, особенно в контексте об авариях, катастрофах, и несчастных случаях, связанных с радиацией, то чаще всего имеется в виду эквивалентная доза. Очень часто у тех, кто пишет о таких проблемах в СМИ, недостаточно информации о том, какие участки тела поражены или будут поражены радиацией, поэтому и вычислить эквивалентную дозу невозможно.

Влияние радиации на организм

Иногда можно оценить ущерб, наносимый организму радиацией, зная поглощенную дозу облучения в греях. Например, радиацию, которой подвергается пациент во время локальной лучевой терапии, измеряют именно в греях. В этом случае также можно определить, как повлияет такое локализированное облучение на организм вцелом. Общее количество поглощенной радиации в течение радиотерапии обычно высоко. Когда эта величина превышает 30 Гр, то возможно повреждение слюнных и потовых, а также других желез, что вызывает сухость во рту, и другие неприятные побочные эффекты. Общие дозы, превышающие 45 Гр, разрушают волосяные фолликулы, что приводит к необратимому выпадению волос.

Важно помнить, что даже когда общая доза поглощенной радиации достаточно высока, степень повреждения тканей и внутренних органов зависит от общего количества времени поглощения радиации, то есть от интенсивности поглощения. Так, например, доза в 1 000 рад или 10 Гр смертельна, если получена в течении нескольких часов, но она может даже не вызвать лучевую болезнь, если получена на протяжении более длительного времени.

Unit Converter articles were edited and illustrated by Анатолий Золотков

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Провести измерение радиоактивного излучения может любой человек, приборы сегодня легко найти в продаже.

Какова безвредная и смертельная доза радиации для человека и что нужно знать, чтобы правильно оценить опасность?

Рассмотрим ниже.

Естественная радиация

Что имеют в виду под словами «естественный радиационный фон»?

Это радиация, создаваемая солнечным, космическим излучением, а также из природных источников. Она воздействует на живые организмы непрерывно.

Биологические объекты, предположительно, к нему адаптированы. К ней не относятся скачки радиации, возникающие из-за деятельности, осуществляемой на планете людьми.

Когда говорят безопасная доза радиации, имеют в виду именно естественный фон. В какой бы зоне человек ни находился, он получает в среднем 2400 мкЗв/год из воздуха, космоса, земли, продуктов питания.

Внимание:

  1. Естественный фон – 4-15 мкР/час. На территории бывшего Союза уровень радиации колеблется от 5 до 25 мкР/ч.
  2. Допустимый фон – 16-60 мкР/час.

Космическое излучение неравномерно охватывает земной шар, нормальная интенсивность на полюсах – выше (магнитное поле земли на экваторе сильнее отклоняет заряженные частицы). А также допустимый уровень зависит от высоты над уровнем моря ( солнечного излучения на высоте 10 км над уровнем моря – 0,2 мбэр/час, на высоте 20 км – 1,6).

Определённое количество получает человек при авиаперелетах: при длительности 7-8 часов на высоте 8 км на турбовинтовом самолете со скоростью ниже скорости звука составит 50 мкЗв.

Внимание: влияние радиоактивного излучения на живые организмы полностью еще не изучено. Малые дозы не вызывают явных, доступных для наблюдения и изучения симптомов, хотя, вероятно, оказывают отложенный, системный эффект.

Вопрос влияния небольших количеств является спорным, одни специалисты утверждают, что к естественному фону человек адаптирован, другие считают, что абсолютно безопасным нельзя считать ни один предел, в том числе нормальный радиационный фон.

Виды радиационного фона


Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

Виды фона:

  1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
  2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
  3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

Как измеряют


Измерять могут либо на местности, либо – если измерение проводится с медицинскими целями — в тканях организма.

Измеряют дозиметрами, которые через несколько минут показывают мощность различных видов излучения (бета и гамма), а также поглощаемую дозу в час. Альфа-лучи бытовые приборы не улавливают.

Потребуется профессиональный, при измерении необходимо, чтобы прибор находился рядом с источником (сложно, если нужно измерить уровень излучения из земли, на которой уже построено строение). Для определения количества радона используют бытовые радиометры радона.

Единицы измерения


Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

Всего существует 5 главных единиц:

  1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
  2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
  3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
  4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
  5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

В системе СИ прописаны Грей, Зиверт.

Существует ли вообще безопасная доза?


Порога безопасности не бывает, это было установлено ученым Р. Зивертом еще в 1950 году. Конкретные цифры могут описать диапазон, предугадать их воздействие возможно только ориентировочно. Даже малая, допустимая доза может вызывать соматические или генетические изменения.

Сложность в том, что увидеть повреждения сразу возможно не всегда, они проявляются некоторое время спустя.

Все это затрудняет исследование вопроса и вынуждает ученых придерживаться осторожных, приблизительных оценок. Именно поэтому безопасный уровень облучения для человека – это диапазон значений.

Кем устанавливаются нормы


Вопросами нормирования и контроля в РФ занимаются специалисты Госкомсанэпиднадзора. В нормах СанПиНа учтены рекомендации международных организаций.

Документы:

  1. НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
  2. ОСПОР-99.

Поглощенная доза


Она показывает, какое количество радионуклидов было поглощено организмом.

Допустимые дозы облучения согласно НРБ-99:

  1. За год – до 1 мЗв, что составляет 0,57 мкЗв/ч (57 микрорентген/час). За любые пять лет подряд – не более 5 мЗв. В год — не более 5 мЗв. Если человек получил дозу облучения за год 4 мЗв, за прочие четыре года должно быть не более 1 мЗв.
  2. За 70 лет (берется как средняя продолжительность всей жизни) – 70 мЗв.

Обратите внимание: 0,57 мкЗв/ч – это верхнее значение, считается, что безопасно для здоровья – в 2 раза меньше. Оптимально: до 0,2 мЗв/час (20 микрорентген/час) – именно на эту цифру и стоит ориентироваться.

Внимание: эти нормы радиационного фона не учитывают естественный уровень, который колеблется в зависимости от местности. Порог для жителей равнин будет ниже.

Это пределы для гражданского населения. Для профессионалов они в 10 раз выше: допустимо 20 мЗв/год за 5 лет подряд, при этом необходимо, чтобы в один год выходило не более 50.

Допустимая, для человека зависит и от длительности облучения: без вреда для здоровья можно провести несколько часов при внешнем облучении 10 мкЗв (1 миллирентген/час), 10-20 минут – при нескольких миллирентген. Выполняя рентген грудной клетки пациент получает 0,5 мЗв, что составляет половину годовой нормы.

Нормы согласно СанПин


Поскольку значительная часть радиации поступает с продуктами питания, питьевой водой и из воздуха, СанПиНом введены нормы, которые позволят оценить эти источники:

  1. Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
  2. В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
  3. Для продуктов норма радиации прописана детально, по каждому виду отдельно.

Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.

Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.

Что делать, если радиоактивность питьевой воды выше указанной нормы (2,2 Бк/кг)?

Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.

Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.

Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.

Смертельная доза


Какая доза будет смертельной?

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

Сегодня слово «радиация» вызывает страх у многих людей. Все мы помним о трагедии на Чернобыльской АЭС, когда от излучения пострадали сотни тысяч человек. Насколько опасна радиация и как ее измерить – рассмотрим в данной статье.

Что представляет собой радиация

Радиацией называется появляющееся в результате радиоактивного распада ионизирующее излучение. Оно может быть нескольких видов, а потому для его измерения применяются различные приборы. Существуют специальные единицы измерения, и в случае, если уровень радиации превышает определенные нормы, то облучение может быть смертельным для человека.

Рассмотрим основные источники радиации:

  1. Более 70 процентов приходится на долю природных радиоактивных веществ, которые окружают человека.
  2. Медицинским процедурам в данном списку отводится чуть более 10 процентов.
  3. Немного больший процент от общего уровня радиации приходится на космическое излучение.

Где чаще всего проводят замеры радиации и с какой целью это делается

Проверка на радиацию осуществляется при помощи специальных приборов – дозиметров. Они позволяют с высокой точностью определить интенсивность излучения на определенном месте. Чаще всего измерение радиации происходит в следующих местах:

  1. Если недалеко от исследуемого района находится зона с повышенным радиационным излучением. Речь идет о той же ЧАЭС.
  2. Во время путешествий и походов дозиметры могут использоваться для обследования неизвестных территорий.
  3. Перед строительством жилого объекта.
  4. При приобретении объектов жилого фонда.

Важно! Поскольку очистить от радиации как саму территорию, так и расположенные на ней объекты, является невозможным, то максимум, что можно сделать в данной ситуации – это измерить уровень облучения. Если он превышает максимально допустимый, то людям рекомендуется избегать зараженного участка.

Единицы измерения радиации

Контроль радиационного излучения предполагает не только определение уровня радиации, но и соотнесение его с определенными нормами, прописанными в соответствующих законах. Поэтому производители большинства видов продукции должны в соответствии с законодательством предоставлять документацию на соответствие конечного продукта определенным нормам.

О том, что радиационный фон вездесущ, известно довольно давно. Однако в большинстве мест уровень радиации попросту считается безопасным. Измеряют его в определенных показателях, наиболее популярными среди которых являются дозы. Это единицы энергии, которые вещество способно поглотить при прохождении через него такого излучения.

Многих людей интересует, в чем измеряется радиация. Рассмотрим основные виды доз в соответствии с единицами их измерения:

  1. Экспозиционная доза, которая имеет место быть при рентгеновском или гамма-излучении. Такие дозы показывают степень ионизации воздуха. Внесистемными единицами измерения такого излучения являются рентген или бэр. Если же говорить о классификации, принятой в международной системе СИ, то единицами измерения экспозиционной дозы выступает кулон на килограмм.
  2. Эффективная доза. Ее определяют для каждого органа в строго индивидуальном порядке. Единицей измерения в данном случае выступает зиверт. Термин «эффективная доза» широко применяется в медицине.
  3. Для поглощенной дозы существует единица измерения – грэй.
  4. Эквивалентная доза зависит от вида излучения. Ее расчет производится в зависимости от коэффициентов.

Радиационное излучение: уровни безопасности

Существуют строго определенные уровни безопасных величин радиации для человека. Каждой территории свойственен определенный радиационный фон. Безопасным и наиболее приемлемым для человека считается показатель в 20 микрорентген в час (0,2 микрозиверт в час). Наивысшим же пределом, который не способен причинить вреда человеческому организму, считается 50 микрорентген в час. Все, что выше данного уровня, является потенциально опасным для здоровья и находиться в подобных радиоактивных зонах нельзя.

Считается, что без особого вреда здоровью человек способен вынести излучение с мощностью до 10 микрозиверт. Если же время воздействия сокращается до минимума, то безвредным может считаться и облучение, силой несколько миллизивертов в час. К примеру, именно таким воздействием обладает рентген или флюорография, уровень радиации которых доходит до трех миллизивертов. Естественно, что длительность такого воздействия на человека должна быть минимальной.

Снимок зуба, выполняемый стоматологом, имеет мощность около 0,2 миллизивертов в час.

Важно! Поглощая облучение, человеческое тело способно накапливать уровень радиации в течение всей жизни. При этом суммарный порог в 700 миллизивертов не должен быть пересечен.

Какие последствия могут быть от облучения

При воздействии радиации на человека возникает облучение. Оно проявляется в виде острой лучевой болезни, которой свойственны разные степени тяжести. Проявляется она уже при облучении дозой радиации, которая равна одному зиверту. Повышение дозы до двух зивертов уже способно увеличить риск развития онкологии, а при трех зивертов существенно возрастает риск летального исхода.

Важно! Основными симптомами лучевой болезни является понос, потеря сил, рвота. Также возможны проявления в виде сухого надсадного кашля и нарушений сердечной деятельности.

Облучение способно вызывать появление лучевых ожогов. При очень больших дозах может происходить отмирание кожи, а также существенные повреждения костей и мышц. В последнем случае лечение будет значительно сложнее тепловых или химических ожогов. Помимо ожогов могут проявляться проблемы в виде нарушения обменных процессов, инфекционные осложнения, лучевая катаракта и даже бесплодие.

Возможен также стохастический эффект, при котором облучения проявляются спустя длительный промежуток времени. Проявляется он в виде раковых опухолей, которые возникают у облученных людей крайне часто. Некоторые ученые считают, что здесь имеют место быть также и генетические эффекты, но при проведении исследований, связанных с 80 тысячами детей, которые родились у японцев, переживших атомную бомбардировку Нагасаки и Хиросимы, не было выявлено увеличение уровня наследственных заболеваний.

Как уже говорилось выше, по статистике, радиация способна повышать уровень онкологических заболеваний, но прямое влияние облучения при этом выявить очень сложно. Ведь рак может быть спровоцирован деятельностью вирусов, химических веществ и т. д. К примеру, после бомбардировки Хиросимы проявление первых побочных эффектов произошло спустя десяток лет.

Важно! На данный момент ученые обнаружили прямую зависимость от облучения рака щитовидной и молочной железы. Также радиация способна провоцировать онкологию в некоторых частях кишечника.

Приборы для измерения радиации

Для измерения уровня радиационного фона используют специальный прибор, именуемый дозиметром. В зависимости от сложности исполнения можно выделить 2 группы приборов – бытовые и профессиональные.

Бытовой дозиметр

Как правило, представляет собой компактный прибор для ношения в кармане или в виде браслета. Работает от батареек или аккумулятора, в случае обнаружения излучения подает звуковой или световой сигнал.

Широко используется туристами, путешественниками и в быту для определения уровня радиации различных предметов обихода, продуктов, стройматериалов в домашних условиях и путешествиях.

Важно! Ввиду особенностей конструкции, бытовой дозиметр чаще всего способен измерять только определенный вид излучения (например могут улавливать альфа или бета частицы), и не может быть использован для контроля выброса сложных соединений и частиц.

Профессиональные дизиметры


Заключение

Радиационное облучение является крайне опасным для жизнедеятельности человека. При этом речь идет только о превышении допустимой нормы, ведь определенный радиационный фон присутствует везде.

Дозы радиации для человека

Излучение радиации .

Излучение - это физический процесс испускания и распространения при определенных условиях в материи или вакууме частиц и электромагнитных волн. Есть два вида излучения - ионизирующее и не ионизирующее. Второе включает тепловое излучение, ультрафиолетовый и видимый свет, радиоизлучение. Ионизирующее излучение появляется в том случае, если под воздействием высокой энергии электроны отделяются от атома и образуют ионы. Когда говорят о радиоактивном облучении, то, как правило, речь идет об ионизирующем излучении. Сейчас речь пойдет именно об этом виде радиации .

Ионизирующее излучение. Попавшие в окружающую среду радиоактивные вещества называют радиационным загрязнением. Оно связано в основном с выбросами радиоактивных отходов в результате аварий на атомных электростанциях (АЭС), при производстве ядерного оружия и др.

Измерение экспозиционной дозы

Радиацию нельзя увидеть, поэтому, чтобы определить наличие радиации, пользуются специальными измерительными приборами — дозиметром на основе счетчика Гейгера.
Дозиметр представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа.
Считывается число радиоактивных частиц, на экране отображается количество этих частиц в разных единицах, чаще всего - как количество радиации за определенный срок времени, например за час.

Влияние радиации на здоровье людей

Радиация вредна для всех живых организмов, она разрушает и нарушает структуру молекул ДНК. Радиация вызывает врожденные пороки и выкидыши, онкологического заболевания, а слишком высокая доза радиации влечет за собой острую или хроническую лучевую болезнь, а также смерть. Радиация - то есть ионизирующее излучение - передает энергию .

Единицей измерения радиоактивности является беккерель (1 беккерель - 1 распад в секунду) или cpm (1 cpm - распад в минуту).
Мера ионизационного воздействия радиоактивного излучения на человека измеряется в рентгенах (Р) или зивертах (Зв), 1 Зв = 100 Р = 100 бэр (бэр - биологический эквивалент рентгена). В одном зиверте 1000 миллизивертов (мЗв).

Для наглядности и примера:
1 рентген = 1000 миллирентген. (80 миллирентген = 0.08 рентген)
1 миллирентген = 1000 микрорентген. (80 микрорентген = 0.08 миллирентген)
1 микрорентген = 0.000001 рентген. (80 рентген = 80000000 микрорентген)
80 Зв = 80000 мЗв = 8000 Р
0,18 мкЗв/ч = 18 мкР/ч
80мР =800мкЗ.

Возьмём для примера расчёт (милли рентген — рентген в час) #1:
1. 80 мР в час = 0.08 Рентген
2. 100000 мР = 100 Рентген (Первые признаки лучевой болезни, по статистике, 10% людей, получивших такую дозу облучения, умирают через 30 дней. Может возникать рвота, симптомы проявляются после 3-6 часов после дозы и могут оставаться вплоть до одного дня. 10-14 дней бывает латентная фаза, ухудшается самочувствие, начинается анорексия и усталость. Иммунная система повреждена, возрастает риск инфекции. Мужчины временно бесплодны. Бывают преждевременные роды или потеря ребенка.)
3. 100/0.08 = 1250 часов/24 = 52 суток, находясь в загрязненном помещении или месте требуется, для того, чтобы появились первые признаки лучевой болезни.

Возьмём для примера расчёт (микро зиверт — микро рентген в час) #2:
1. 1 микро зиверт (мкЗв, µSv) — 100 микро рентген.
2. Норма 0.20 мкЗв (20 мкр/ч)
Норма санитарная почти во всем мире — до 0.30 мк3в (30 мкр/ч)
Т.е 60 микрорентген = 0.00006 рентген.
3. Или 1 рентген = 0,01 Зиверт
100 рентген = 1 Зиверт.

Как пример
11.68 мкЗ/ч = 1168 микроРентгена/ч = 1.168 миллирентгена.
1000 мкР (1мР) = 10.0 мкЗв = 0,001 Рентгена.
0.30 мкЗв = 30 мкР = 0,00003 Рентгена.

КЛИНИЧЕСКИЕ ПОСЛЕДСТВИЯ ОСТРОГО (КРАТКОВРЕМЕННОГО) ГАММА-ОБЛУЧЕНИЯ, РАВНОМЕРНОГО ПО ВСЕМУ ТЕЛУ ЧЕЛОВЕКА

Исходная таблица включает также такие дозы и их эффекты:

- 300–500 Р — бесплодие на всю жизнь. Сейчас принято считать, что при дозе 350 Р у мужчин возникает временное отсутствие сперматозоидов в сперме. Полностью и навсегда сперматозоиды исчезают только при дозе 550 Р т,е при тяжелой форме лучевой болезни;

- 300–500 Р локальное облучения кожи, выпадают волосы, краснеет или слезает кожа;

- 200 Р снижение количества лимфоцитов на долгое время (первые 2–3 недели после облучения).

- 600-1000 Р смертельная доза, вылечиться невозможно, можно только продлить жизнь на несколько лет с тяжелыми симптомами. Наступает практически полное разрушение костного мозга, требующее трансплантации. Серьезное повреждение пищеварительного тракта.

- 10-80 Зв (10000-80000 мЗв, 1000-5000 Р) . Кома, смерть. Смерть наступает через 5-30 минут.

- Более 80 Зв (80000 мЗв, 8000 Р) . Мгновенная смерть.

Миллизиверты атомщиков и ликвидаторов

50 миллизивертов — это годовая предельно допустимая доза облучения операторов на атомных объектах.
250 миллизивертов — это предельно допустимая аварийная доза облучения для профессионалов-ликвидаторов. Необходимо лечение.
300 мЗв — первые признаки лучевой болезни.
4000 мЗв — лучевая болезнь с вероятностью летального исхода, т.е. смерти.
6000 мЗв — смерть в течение нескольких дней.


1 миллизиверт (мЗв) = 1000 микрозивертов (мкЗв).
1 мЗв — это одна тысячная Зиверта (0,001 Зв).

Радиоактивность: альфа-, бета-, гамма-излучение

Атомы вещества состоят из ядра и вращающихся вокруг него электронов. Ядро – это устойчивое образование, которое сложно разрушить. Но, ядра атомов некоторых веществ обладают нестабильностью и могут излучать в пространство энергию и частицы.

Это излучение называют радиоактивным, и оно включает в себя несколько составляющих, которые назвали соответственно первым трем буквам греческого алфавита: α-, β- и γ- излучение. (альфа-, бета- и гамма-излучение). Эти излучения различны, разное и их действие на человека и меры защиты от него.

Альфа-излучение

Поток тяжелых положительно заряженных частиц. Возникает в результате распада атомов тяжелых элементов, таких как уран, радий и торий. В воздухе альфа-излучение проходит не более 5 см и, как правило, полностью задерживается листом бумаги или внешним слоем кожи. Если вещество, испускающее альфа-частицы, попадает внутрь организма с пищей или воздухом, оно облучает внутренние органы и становится опасным.

Бета-излучение

Электроны, которые значительно меньше альфа-частиц и могут проникать вглубь тела на несколько сантиметров. От него можно защититься тонким листом металла, оконным стеклом и даже обычной одеждой. Попадая на незащищенные участки тела, бета-излучение оказывает воздействие, как правило, на верхние слои кожи. Во время аварии на Чернобыльской АЭС в апреле 1986 года пожарные получили ожоги кожи в результате очень сильного облучения бета-частицами. Если вещество, испускающее бета-частицы, попадет в организм, оно будет облучать внутренности человека.

Гамма-излучение

Фотоны, т.е. электромагнитная волна, несущая энергию. В воздухе может проходить большие расстояния, постепенно теряя энергию в результате столкновений с атомами окружающей среды. Интенсивное гамма-излучение, если от него не защититься, может повредить не только кожу, но и внутренние органы. Толстые слои железа, бетона и свинца, являются отличными барьерами на пути гамма-излучения.

Как видно, альфа-излучение по его характеристикам практически не опасно, если не вдохнуть его частички или не съесть с пищей. Бета-излучение может причинить ожоги кожи в результате облучения. Самые опасные свойства у гамма-излучения. Оно проникает глубоко внутрь тела, и вывести его оттуда очень сложно, а воздействие очень разрушительно.

Без специальных приборов знать, что за вид радиации присутствует в данном конкретном случае нельзя, тем более, что всегда можно случайно вдохнуть частички радиации с воздухом.

Поэтому общее правило одно – избегать подобных мест.

Для справки и общей информации:
Вы летите в самолете на высоте в 10 км, где фон порядка 200-250 мкр/ч. Не сложно посчитать, какая доза будет при двух часовом перелёте.


Основными долгоживущими радионуклидами, обусловившими загрязнение с ЧАЭС, являются:

Стронций-90 (Период полураспада ~28 лет)
Цезий-137 (Период полураспада ~31 лет)
Америций-241 (Период полураспада ~430 года)
Плутоний-239 (Период полураспада - 24120 лет)
Прочие радиоактивные элементы (в том числе изотопы Йод-131, Кобальт-60, Цезий-134) к настоящему времени из-за относительно коротких периодов полураспада уже практически полностью распались и и не влияют на радиоактивное загрязнение местности.

(Просмотрено 113625 раз)

Похожие публикации